Product SiteDocumentation Site

Fedora 17

Guía de Administración del Sistema

Despliegue, Configuración, y Administración de Fedora 17

Edición 1

Jaromír Hradílek

Red Hat, Inc. Servicios de ingeniería de contenido

Douglas Silas

Red Hat, Inc. Servicios de ingeniería de contenido

Martin Prpič

Red Hat, Inc. Servicios de ingeniería de contenido

Stephen Wadeley

Red Hat, Inc. Servicios de ingeniería de contenido

Eliška Slobodová

Red Hat, Inc. Servicios de ingeniería de contenido

Tomás capek

Red Hat, Inc. Servicios de ingeniería de contenido

Petr Kovár

Red Hat, Inc. Servicios de ingeniería de contenido

John Ha

Red Hat, Inc. Servicios de ingeniería de contenido

David O'Brien

Red Hat, Inc. Servicios de ingeniería de contenido

Michael Hideo

Red Hat, Inc. Servicios de ingeniería de contenido

Don Domingo

Red Hat, Inc. Servicios de ingeniería de contenido

Aviso Legal

Copyright © 2012 Red Hat, Inc. and others.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
For guidelines on the permitted uses of the Fedora trademarks, refer to https://fedoraproject.org/wiki/Legal:Trademark_guidelines.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
All other trademarks are the property of their respective owners.
Resumen
La Guía de Administración del Sistema documenta la informatión relacionada con el despliegue, configuración, y administración de Fedora 17. esta orientada hacia los administradores de sistemas con un conocimiento basico del sistema.

Prefacio
1. Público objetivo
2. Cómo leer este libro
3. Convenciones del Documento
3.1. Convenciones Tipográficas
3.2. Convenciones del documento
3.3. Notas y Advertencias
4. Comentarios
5. Agradecimientos
I. Configuración básica del sistema
1. Configurando el Lenguaje y el Teclado
1.1. Cambiando el lenguaje
1.2. Cambiando la Fecha, la Hora y el Formato Numérico
1.3. Cambiando la disposición del teclado
1.4. Viendo la configuración Actual
2. Configuración de la Fecha y Hora
2.1. Usando la herramienta de configuración de fecha y hora
2.2. Usando las herramientas de línea de comando
2.2.1. Cambiando la fecha
2.2.2. Cambiando la hora
2.2.3. Configurando el Protocolo de Tiempo en Red
2.3. Recursos adicionales
2.3.1. Documentación instalada
3. Managing Users and Groups
3.1. Introduction to Users and Groups
3.1.1. Grupos de usuario privado
3.1.2. Contraseñas Shadow
3.2. Using the User Accounts Tool
3.2.1. Configuring an Account
3.2.2. Añadir un nuevo usuario
3.2.3. Removing a User
3.3. Using the User Manager Tool
3.3.1. Viewing Users and Groups
3.3.2. Añadir un nuevo usuario
3.3.3. Añadir un nuevo grupo
3.3.4. Modificar las propiedades del usuario
3.3.5. Modificar las propiedades del grupo
3.4. Using Command Line Tools
3.4.1. Añadir un nuevo usuario
3.4.2. Añadir un nuevo grupo
3.4.3. Enabling Password Aging
3.4.4. Enabling Automatic Logouts
3.4.5. Creating Group Directories
3.5. Recursos adicionales
3.5.1. Documentación instalada
II. Gestión de paquetes
4. Yum
4.1. Para la comprobación y actualización de paquetes
4.1.1. comprobación de actualizaciones
4.1.2. Actualizando paquetes
4.1.3. Conservando cambios en los Archivos de Configuracion
4.2. Paquetes y grupos de paquetes
4.2.1. Buscando paquetes
4.2.2. Listando paquetes
4.2.3. Mostrando información del paquete
4.2.4. Installing Packages
4.2.5. Removing Packages
4.2.6. Working with Transaction History
4.3. Configurando Yum y repositorios de Yum
4.3.1. Setting [main] Options
4.3.2. Setting [repository] Options
4.3.3. Using Yum Variables
4.3.4. Viewing the Current Configuration
4.3.5. Adding, Enabling, and Disabling a Yum Repository
4.3.6. Creating a Yum Repository
4.4. Yum Plug-ins
4.4.1. Enabling, Configuring, and Disabling Yum Plug-ins
4.4.2. Installing Additional Yum Plug-ins
4.4.3. Plug-in Descriptions
4.5. Recursos adicionales
5. PackageKit
5.1. Updating Packages with Software Update
5.1.1. Setting the Update-Checking Interval
5.1.2. Setting the Software Sources
5.2. Using Add/Remove Software
5.2.1. Refreshing Software Sources (Yum Repositories)
5.2.2. Finding Packages with Filters
5.2.3. Installing and Removing Packages (and Dependencies)
5.2.4. Installing and Removing Package Groups
5.2.5. Viewing the Transaction Log
5.3. PackageKit Architecture
5.4. Recursos adicionales
III. Interconexión
6. NetworkManager
6.1. The NetworkManager Daemon
6.2. Interacting with NetworkManager
6.2.1. Connecting to a Network
6.2.2. Configuring New and Editing Existing Connections
6.2.3. Connecting to a Network Automatically
6.2.4. User and System Connections
6.3. Establishing Connections
6.3.1. Establishing a Wired (Ethernet) Connection
6.3.2. Establishing a Wireless Connection
6.3.3. Establishing a Mobile Broadband Connection
6.3.4. Establishing a VPN Connection
6.3.5. Establishing a DSL Connection
6.3.6. Establishing Routes
6.4. Configuring Connection Settings
6.4.1. Configuring 802.1x Security
6.4.2. Configuring Wireless Security
6.4.3. Configuring PPP (Point-to-Point) Settings
6.4.4. Configuring IPv4 Settings
6.4.5. Configuring IPv6 Settings
6.5. NetworkManager Architecture
7. Interfaces de red
7.1. Archivos de configuración de red
7.2. Archivos de configuración de interfaz
7.2.1. Interfaces Ethernet
7.2.2. Interfaces de unión de canales
7.2.3. Network Bridge
7.2.4. Setting up 802.1q VLAN tagging
7.2.5. Archivos alias y clon
7.2.6. Interfaces de acceso telefónico
7.2.7. Otras interfaces
7.3. Scripts de control de interfaz
7.4. Configurando rutas estáticas
7.5. Archivos de funciones de red
7.6. Recursos adicionales
7.6.1. Documentación instalada
IV. Servicios de infraestructura
8. Services and Daemons
8.1. Configuring Services
8.1.1. Enabling the Service
8.1.2. Disabling the Service
8.2. Running Services
8.2.1. Checking the Service Status
8.2.2. Running the Service
8.2.3. Stopping the Service
8.2.4. Restarting the Service
8.3. Recursos adicionales
8.3.1. Documentación instalada
8.3.2. Libros relacionados
9. Configuring Authentication
9.1. La herramienta de configuración de autenticación
9.1.1. Identidad y autenticación
9.1.2. Opciones avanzadas
9.1.3. Versión de línea de comandos
9.2. El Daemon de Servicios de Seguridad del Sistema (SSSD)
9.2.1. ¿Qué es SSSD?
9.2.2. Características de SSSD
9.2.3. Configurando SSSD
9.2.4. Configuring Services
9.2.5. Configuring Domains
9.2.6. Setting Up Kerberos Authentication
9.2.7. Configuring a Proxy Domain
9.2.8. Troubleshooting
9.2.9. SSSD Configuration File Format
10. OpenSSH
10.1. The SSH Protocol
10.1.1. ¿Por qué usar SSH?
10.1.2. Main Features
10.1.3. Protocol Versions
10.1.4. Secuencia de eventos de una conexión SSH
10.2. An OpenSSH Configuration
10.2.1. Archivos de configuración
10.2.2. Starting an OpenSSH Server
10.2.3. Requiriendo SSH para conexiones remotas
10.2.4. Using a Key-Based Authentication
10.3. OpenSSH Clients
10.3.1. Using the ssh Utility
10.3.2. Using the scp Utility
10.3.3. Using the sftp Utility
10.4. Más que un Shell seguro
10.4.1. Reenvío por X11
10.4.2. Reenvío del puerto
10.5. Recursos adicionales
10.5.1. Documentación instalada
10.5.2. Sitios Web útiles
V. Servidores
11. DHCP Servers
11.1. Motivos para usar el protocolo DHCP
11.2. Configuración de un servidor DHCP
11.2.1. Archivo de configuración
11.2.2. Base de datos de arrendamiento
11.2.3. Iniciar y detener el servidor
11.2.4. Agente de transmisión DHCP
11.3. Configuración de un cliente DHCP
11.4. Configuring a Multihomed DHCP Server
11.4.1. Host Configuration
11.5. DHCP for IPv6 (DHCPv6)
11.6. Recursos adicionales
11.6.1. Documentación instalada
12. DNS Servers
12.1. Introducción a DNS
12.1.1. Zonas de servidores de nombres
12.1.2. Tipos de servidores de nombres
12.1.3. BIND as a Nameserver
12.2. BIND
12.2.1. Configuring the named Service
12.2.2. Editing Zone Files
12.2.3. Using the rndc Utility
12.2.4. Using the dig Utility
12.2.5. Características avanzadas de BIND
12.2.6. Errores comunes que debe evitar
12.2.7. Recursos adicionales
13. Servidores web
13.1. The Apache HTTP Server
13.1.1. New Features
13.1.2. Notable Changes
13.1.3. Updating the Configuration
13.1.4. Running the httpd Service
13.1.5. Editing the Configuration Files
13.1.6. Working with Modules
13.1.7. Setting Up Virtual Hosts
13.1.8. Setting Up an SSL Server
13.1.9. Recursos adicionales
14. Mail Servers
14.1. Protocolos de correo electrónico
14.1.1. Protocolos de transporte de correo
14.1.2. Protocolos de acceso a correo
14.2. Clasificaciones de los programas de correo
14.2.1. Mail Transport Agent
14.2.2. Mail Delivery Agent
14.2.3. Mail User Agent
14.3. Agentes de transporte de correo
14.3.1. Postfix
14.3.2. Sendmail
14.3.3. Fetchmail
14.3.4. Configuración del Agente de Transporte de Correo (MTA)
14.4. Agente de entrega de correo
14.4.1. Configuración de Procmail
14.4.2. Recetas de Procmail
14.5. Agentes de usuario de correo
14.5.1. Comunicación segura
14.6. Recursos adicionales
14.6.1. Documentación instalada
14.6.2. Sitios Web útiles
14.6.3. Libros relacionados
15. Servidores de directorio
15.1. OpenLDAP
15.1.1. Introduction to LDAP
15.1.2. Installing the OpenLDAP Suite
15.1.3. Configuring an OpenLDAP Server
15.1.4. Running an OpenLDAP Server
15.1.5. Configurar un sistema para la autenticación mediante OpenLDAP
15.1.6. Recursos adicionales
16. Servidores de archivos e impresoras
16.1. Samba
16.1.1. Introducción a Samba
16.1.2. Demonios Samba y Servicios relacionados
16.1.3. Conexión a un recurso compartido Samba
16.1.4. Configuración del servidor Samba
16.1.5. Arrancar y detener el Samba
16.1.6. Samba Server Types and the smb.conf File
16.1.7. Modos de seguridad Samba
16.1.8. Bases de datos de información de cuentas Samba
16.1.9. Navegación de red con Samba
16.1.10. Samba con soporte para la impresión con CUPS
16.1.11. Programas de distribución Samba
16.1.12. Recursos adicionales
16.2. FTP
16.2.1. El Protocolo de Transferencia de Archivo
16.2.2. Servidores FTP
16.2.3. Archivos instalados con vsftpd
16.2.4. Iniciar y Detener vsftpd
16.2.5. vsftpd Opciones de configuracion
16.2.6. Recursos adicionales
16.3. Configuración de la impresora
16.3.1. Iniciando la herramienta de configuración de impresora
16.3.2. Iniciando ajustes de impresora
16.3.3. Añadir una impresora local
16.3.4. Agregando una impresora AppSocket/HP JetDirect
16.3.5. Añadir una impresora de red IPP
16.3.6. Agregando una impresora o equipo LPD/LPR
16.3.7. Adding a Samba (SMB) printer
16.3.8. Selección del modelo de impresora
16.3.9. Printing a test page
16.3.10. Modificar impresoras existentes
16.3.11. Recursos adicionales
VI. Monitorización y automatizado
17. System Monitoring Tools
17.1. Viewing System Processes
17.1.1. Using the ps Command
17.1.2. Using the top Command
17.1.3. Using the System Monitor Tool
17.2. Viewing Memory Usage
17.2.1. Using the free Command
17.2.2. Using the System Monitor Tool
17.3. Viewing CPU Usage
17.3.1. Using the System Monitor Tool
17.4. Viewing Block Devices and File Systems
17.4.1. Using the lsblk Command
17.4.2. Using the blkid Command
17.4.3. Using the partx Command
17.4.4. Using the findmnt Command
17.4.5. Using the df Command
17.4.6. Using the du Command
17.4.7. Using the System Monitor Tool
17.5. Viewing Hardware Information
17.5.1. Using the lspci Command
17.5.2. Using the lsusb Command
17.5.3. Using the lspcmcia Command
17.5.4. Using the lscpu Command
17.6. Monitoring Performance with Net-SNMP
17.6.1. Installing Net-SNMP
17.6.2. Running the Net-SNMP Daemon
17.6.3. Configuring Net-SNMP
17.6.4. Retrieving Performance Data over SNMP
17.6.5. Extending Net-SNMP
17.7. Recursos adicionales
17.7.1. Documentación instalada
18. Viewing and Managing Log Files
18.1. Configuring rsyslog
18.1.1. Global Directives
18.1.2. Modules
18.1.3. Rules
18.1.4. rsyslog Command Line Configuration
18.2. Localizar archivos de registro
18.2.1. Configuring logrotate
18.3. Visualizar los archivos de registro
18.4. Adding a Log File
18.5. Control de Archivos de Registro
18.6. Recursos adicionales
18.6.1. Documentación instalada
18.6.2. Sitios Web útiles
19. Automating System Tasks
19.1. Cron y Anacron
19.1.1. Iniciar y finalizar el servicio
19.1.2. Configuring Anacron Jobs
19.1.3. Configuring Cron Jobs
19.1.4. Controlando el acceso a Cron
19.1.5. Black/White Listing of Cron Jobs
19.2. At y Batch
19.2.1. Configuración de tareas At
19.2.2. Configuración de tareas Batch
19.2.3. Visualizando las tareas pendientes
19.2.4. Opciones adicionales de la línea de comandos
19.2.5. Control de acceso a At y Batch
19.2.6. Iniciar y finalizar el servicio
19.3. Recursos adicionales
19.3.1. Documentación instalada
20. OProfile
20.1. Descripción general de las herramientas
20.2. Configuración de Oprofile
20.2.1. Especificar el Kernel
20.2.2. Configurar los eventos a supervisar
20.2.3. Separar perfiles del Kernel y del espacio del usuario
20.3. Iniciar y detener Oprofile
20.4. Guardar los datos
20.5. Análisis de los datos
20.5.1. Using opreport
20.5.2. Using opreport on a Single Executable
20.5.3. Obtener salidas más detalladas sobre los módulos
20.5.4. Using opannotate
20.6. Understanding /dev/oprofile/
20.7. Ejemplo de uso
20.8. OProfile Support for Java
20.8.1. Profiling Java Code
20.9. Interfaz gráfica
20.10. OProfile and SystemTap
20.11. Recursos adicionales
20.11.1. Documentos instalados
20.11.2. Sitios Web útiles
VII. Configuración del kernel, módulos y controladores
21. Actualización Manual del Kernel
21.1. Descripción general de los Paquetes del kernel
21.2. Preparación para la actualización
21.3. Descarga el Kernel actualizado
21.4. Realizando la actualización
21.5. Verificación de la imagen de disco RAM inicial
21.6. Configuración del gestor de arranque
21.6.1. Configuring the GRUB 2 Boot Loader
21.6.2. Configurando el gestor de arranque del OS/400
21.6.3. Configurando el gestor de arranque YABOOT
22. Working with Kernel Modules
22.1. Listing Currently-Loaded Modules
22.2. Displaying Information About a Module
22.3. Loading a Module
22.4. Unloading a Module
22.5. Setting Module Parameters
22.6. Carga Persistente de Módulos
22.7. Specific Kernel Module Capabilities
22.7.1. Utilización de Múltiples Tarjetas Ethernet
22.7.2. Using Channel Bonding
22.8. Recursos adicionales
22.8.1. Documentación instalada
22.8.2. Sitios Web útiles
23. The kdump Crash Recovery Service
23.1. Installing the kdump Service
23.2. Configuring the kdump Service
23.2.1. Configuring the kdump at First Boot
23.2.2. Using the Kernel Dump Configuration Utility
23.2.3. Configuring kdump on the Command Line
23.2.4. Testing the Configuration
23.3. Analyzing the Core Dump
23.3.1. Running the crash Utility
23.3.2. Displaying the Message Buffer
23.3.3. Displaying a Backtrace
23.3.4. Displaying a Process Status
23.3.5. Displaying Virtual Memory Information
23.3.6. Displaying Open Files
23.3.7. Exiting the Utility
23.4. Recursos adicionales
23.4.1. Documentación instalada
23.4.2. Sitios Web útiles
A. Nombramiento Consistente de Dispositivos de Red
A.1. Sistemas Afectados
A.2. Requerimientos del Sistema
A.3. Activando y Desactivando la Característica
A.4. Notas para Administradores
B. RPM
B.1. Metas de diseño RPM
B.2. El uso de RPM
B.2.1. Encontrar paquetes RPM
B.2.2. Installing and Upgrading
B.2.3. Configuration File Changes
B.2.4. Desinstalación
B.2.5. Refrescamiento
B.2.6. Consultas
B.2.7. Verificación
B.3. Revisando la firma de los paquetes
B.3.1. Importando llaves
B.3.2. Verificación de la Firma de los Paquetes
B.4. Ejemplos comunes y prácticos sobre el uso de RPM
B.5. Recursos adicionales
B.5.1. Documentación instalada
B.5.2. Sitios Web útiles
B.5.3. Libros relacionados
C. El Sistema X Window
C.1. The X Server
C.2. Entornos de escritorio y gestores de ventanas
C.2.1. Entornos de escritorio
C.2.2. Gestores de ventanas
C.3. Archivos de configuración del servidor X
C.3.1. The Structure of the Configuration
C.3.2. The xorg.conf.d Directory
C.3.3. The xorg.conf File
C.4. Fuentes
C.4.1. Añadir fuentes a Fontconfig
C.5. Runlevels and X
C.5.1. Runlevel 3
C.5.2. Runlevel 5
C.6. Recursos adicionales
C.6.1. Documentación instalada
C.6.2. Sitios Web útiles
D. The sysconfig Directory
D.1. Files in the /etc/sysconfig/ Directory
D.1.1. /etc/sysconfig/arpwatch
D.1.2. /etc/sysconfig/authconfig
D.1.3. /etc/sysconfig/autofs
D.1.4. /etc/sysconfig/clock
D.1.5. /etc/sysconfig/dhcpd
D.1.6. /etc/sysconfig/firstboot
D.1.7. /etc/sysconfig/i18n
D.1.8. /etc/sysconfig/init
D.1.9. /etc/sysconfig/ip6tables-config
D.1.10. /etc/sysconfig/keyboard
D.1.11. /etc/sysconfig/ldap
D.1.12. /etc/sysconfig/named
D.1.13. /etc/sysconfig/network
D.1.14. /etc/sysconfig/ntpd
D.1.15. /etc/sysconfig/quagga
D.1.16. /etc/sysconfig/radvd
D.1.17. /etc/sysconfig/samba
D.1.18. /etc/sysconfig/selinux
D.1.19. /etc/sysconfig/sendmail
D.1.20. /etc/sysconfig/spamassassin
D.1.21. /etc/sysconfig/squid
D.1.22. /etc/sysconfig/system-config-users
D.1.23. /etc/sysconfig/vncservers
D.1.24. /etc/sysconfig/xinetd
D.2. Directories in the /etc/sysconfig/ Directory
D.3. Recursos adicionales
D.3.1. Documentación instalada
E. The proc File System
E.1. A Virtual File System
E.1.1. Viewing Virtual Files
E.1.2. Changing Virtual Files
E.2. Top-level Files within the proc File System
E.2.1. /proc/buddyinfo
E.2.2. /proc/cmdline
E.2.3. /proc/cpuinfo
E.2.4. /proc/crypto
E.2.5. /proc/devices
E.2.6. /proc/dma
E.2.7. /proc/execdomains
E.2.8. /proc/fb
E.2.9. /proc/filesystems
E.2.10. /proc/interrupts
E.2.11. /proc/iomem
E.2.12. /proc/ioports
E.2.13. /proc/kcore
E.2.14. /proc/kmsg
E.2.15. /proc/loadavg
E.2.16. /proc/locks
E.2.17. /proc/mdstat
E.2.18. /proc/meminfo
E.2.19. /proc/misc
E.2.20. /proc/modules
E.2.21. /proc/mounts
E.2.22. /proc/mtrr
E.2.23. /proc/partitions
E.2.24. /proc/slabinfo
E.2.25. /proc/stat
E.2.26. /proc/swaps
E.2.27. /proc/sysrq-trigger
E.2.28. /proc/uptime
E.2.29. /proc/version
E.3. Directories within /proc/
E.3.1. Process Directories
E.3.2. /proc/bus/
E.3.3. /proc/bus/pci
E.3.4. /proc/driver/
E.3.5. /proc/fs
E.3.6. /proc/irq/
E.3.7. /proc/net/
E.3.8. /proc/scsi/
E.3.9. /proc/sys/
E.3.10. /proc/sysvipc/
E.3.11. /proc/tty/
E.3.12. /proc/PID/
E.4. Using the sysctl Command
E.5. Referencias
F. Historial de revisiones
Índice

Prefacio

La Guía del administrador de sistemas contiene información sobre cómo personalizar el sistema Fedora 17 para que se ajuste a sus necesidades. Si está buscando una guía detallada y orientada a tareas para configurar y personalizar su sistema, éste es el manual para usted.
Este manual discute temas de nivel intermedio como:
  • Instalar y gestionar paquetes utilizando la aplicación gráfica PackageKit y el gestor de paquetes por línea de comandos Yum
  • Setting up a network—from establishing an Ethernet connection using NetworkManager to configuring channel bonding interfaces to increase server bandwidth
  • Configuring DHCP, BIND, Apache HTTP Server, Postfix, Sendmail and other enterprise-class servers and software
  • Gathering information about your system, including obtaining user-space crash data with the Automatic Bug Reporting Tool, and kernel-space crash data with kdump
  • Trabajar fácilmente con módulos del núcleo y actualizar el núcleo

1. Público objetivo

The Deployment Guide assumes you have a basic understanding of the Fedora operating system. If you need help with the installation of this system, refer to the Fedora 17 Installation Guide.

2. Cómo leer este libro

Este manual está dividido fundamentalmente en las siguientes categorías:
Parte I, “Configuración básica del sistema”
Esta parte comprende tareas básicas de administración de sistemas como la configuración del teclado, de la fecha y la hora, y gestionar usuarios y grupos.
Capítulo 1, Configurando el Lenguaje y el Teclado covers basic language and keyboard setup. Read this chapter if you need to configure the language of your desktop, change the keyboard layout, or add the keyboard layout indicator to the panel.
Capítulo 2, Configuración de la Fecha y Hora covers the configuration of the system date and time. Read this chapter if you need to change the date and time setup, or configure the system to synchronize the clock with a remote Network Time Protocol (NTP) server.
Capítulo 3, Managing Users and Groups covers the management of users and groups in a graphical user interface and on the command line. Read this chapter if you need to manage users and groups on your system, or enable password aging.
Parte II, “Gestión de paquetes”
Esta parte describe cómo gestionar los paquetes de software en Fedora utilizando Yum y el conjunto de herramientas gráficas de gestión de paquetes PackageKit.
Capítulo 4, Yum describe al gestor de paquetes Yum. Lea este capítulo para obtener información sobre cómo buscar, instalar, actualizar y desinstalar paquetes desde la línea de comandos.
Capítulo 5, PackageKit describe al conjunto de herramientas gráficas para gestionar paquetes PackageKit. Lea este capítulo para obtener información sobre cómo buscar, instalar, actualizar y desinstalar paquetes utilizando una interfaz gráfica de usuario.
Parte III, “Interconexión”
Esta parte describe cómo configurar la red en Fedora.
Capítulo 7, Interfaces de red explores various interface configuration files, interface control scripts, and network function files located in the /etc/sysconfig/network-scripts/ directory. Read this chapter for information how to use these files to configure network interfaces.
Parte IV, “Servicios de infraestructura”
Esta parte proporciona información sobre cómo configurar servicios y demonios, configurar la autenticación y activar el inicio de sesión remoto.
Capítulo 8, Services and Daemons covers the configuration of the services to be run when a system is started, and provides information on how to start, stop, and restart the services on the command line using the systemctl utility.
Capítulo 9, Configuring Authentication describes how to configure user information retrieval from Lightweight Directory Access Protocol (LDAP), Network Information Service (NIS), and Winbind user account databases, and provides an introduction to the System Security Services Daemon (SSSD). Read this chapter if you need to configure authentication on your system.
Capítulo 10, OpenSSH describes how to enable a remote login via the SSH protocol. It covers the configuration of the sshd service, as well as a basic usage of the ssh, scp, sftp client utilities. Read this chapter if you need a remote access to a machine.
Parte V, “Servidores”
Esta parte trata varios temas relacionados a los servidores, como el método para configurar un servidor web o cómo compartir archivos y directorios a través de la red.
Capítulo 11, DHCP Servers guides you through the installation of a Dynamic Host Configuration Protocol (DHCP) server and client. Read this chapter if you need to configure DHCP on your system.
Capítulo 12, DNS Servers introduces you to Domain Name System (DNS), explains how to install, configure, run, and administer the BIND DNS server. Read this chapter if you need to configure a DNS server on your system.
Capítulo 13, Servidores web focuses on the Apache HTTP Server 2.2, a robust, full-featured open source web server developed by the Apache Software Foundation. Read this chapter if you need to configure a web server on your system.
Capítulo 14, Mail Servers reviews modern email protocols in use today, and some of the programs designed to send and receive email, including Postfix, Sendmail, Fetchmail, and Procmail. Read this chapter if you need to configure a mail server on your system.
Capítulo 15, Servidores de directorio covers the installation and configuration of OpenLDAP 2.4, an open source implementation of the LDAPv2 and LDAPv3 protocols. Read this chapter if you need to configure a directory server on your system.
Capítulo 16, Servidores de archivos e impresoras guides you through the installation and configuration of Samba, an open source implementation of the Server Message Block (SMB) protocol, and vsftpd, the primary FTP server shipped with Fedora. Additionally, it explains how to use the Printer Configuration tool to configure printers. Read this chapter if you need to configure a file or print server on your system.
Parte VI, “Monitorización y automatizado”
Esta parte describe varias herramientas que permiten a los administradores de sistemas monitorear el rendimiento del sistema, automatizar tareas del sistema e informar de fallos.
Capítulo 17, System Monitoring Tools discusses applications and commands that can be used to retrieve important information about the system. Read this chapter to learn how to gather essential system information.
Capítulo 18, Viewing and Managing Log Files describes the configuration of the rsyslog daemon, and explains how to locate, view, and monitor log files. Read this chapter to learn how to work with log files.
Capítulo 19, Automating System Tasks provides an overview of the cron, at, and batch utilities. Read this chapter to learn how to use these utilities to perform automated tasks.
Capítulo 20, OProfile covers OProfile, a low overhead, system-wide performance monitoring tool. Read this chapter for information how to use OProfile on your system.
Parte VII, “Configuración del kernel, módulos y controladores”
This part covers various tools that assist administrators with kernel customization.
Capítulo 21, Actualización Manual del Kernel provides important information how to manually update a kernel package using the rpm command instead of yum. Read this chapter if you cannot update a kernel package with the Yum package manager.
Capítulo 22, Working with Kernel Modules explains how to display, query, load, and unload kernel modules and their dependencies, and how to set module parameters. Additionally, it covers specific kernel module capabilities such as using multiple Ethernet cards and using channel bonding. Read this chapter if you need to work with kernel modules.
Capítulo 23, The kdump Crash Recovery Service explains how to configure, test, and use the kdump service in Fedora, and provides a brief overview of how to analyze the resulting core dump using the crash debugging utility. Read this chapter to learn how to enable kdump on your system.
Apéndice A, Nombramiento Consistente de Dispositivos de Red
This appendix covers consistent network device naming for network interfaces, a feature that changes the name of network interfaces on a system in order to make locating and differentiating the interfaces easier. Read this appendix to learn more about this feature and how to enable or disable it.
Apéndice B, RPM
This appendix concentrates on the RPM Package Manager (RPM), an open packaging system used by Fedora, and the use of the rpm utility. Read this appendix if you need to use rpm instead of yum.
Apéndice C, El Sistema X Window
Este apéndice abarca la configuración del Sistema de ventanas X, el entorno gráfico que utiliza Fedora. Lea este apéndice si necesita ajustar la configuración de su Sistema de ventanas X.
Apéndice D, The sysconfig Directory
This appendix outlines some of the files and directories located in the /etc/sysconfig/ directory. Read this appendix if you want to learn more about these files and directories, their function, and their contents.
Apéndice E, The proc File System
This appendix explains the concept of a virtual file system, and describes some of the top-level files and directories within the proc file system (that is, the /proc/ directory). Read this appendix if you want to learn more about this file system.

3. Convenciones del Documento

Este manual utiliza varias convenciones para resaltar algunas palabras y frases y llamar la atención sobre ciertas partes específicas de información.
En ediciones PDF y de papel, este manual utiliza tipos de letra procedentes de Liberation Fonts. Liberation Fonts también se utilizan en ediciones de HTML si están instalados en su sistema. Si no, se muestran tipografías alternativas pero equivalentes. Nota: Red Hat Enterprise Linux 5 y siguientes incluyen Liberation Fonts predeterminadas.

3.1. Convenciones Tipográficas

Se utilizan cuatro convenciones tipográficas para llamar la atención sobre palabras o frases específicas. Dichas convenciones y las circunstancias en que se aplican son las siguientes:
Negrita monoespaciado
Utilizada para resaltar la entrada del sistema, incluyendo comandos de shell, nombres de archivo y rutas. También se utiliza para resaltar teclas claves y combinaciones de teclas. Por ejemplo:
Para ver el contenido del archivo my_next_bestselling_novel en su directorio actual de trabajo, escriba el comando cat my_next_bestselling_novel en el intérprete de comandos de shell y pulse Enter para ejecutar el comando.
El ejemplo anterior incluye un nombre de archivo, un comando de shell y una tecla clave. Todo se presenta en negrita-monoespaciado y distinguible gracias al contexto.
Las combinaciones de teclas se pueden distinguir de las teclas claves mediante el guión que conecta cada parte de una combinación de tecla. Por ejemplo:
Pulse Enter para ejecutar el comando.
Pulse Control+Alt+F2 para cambiar a la primera terminal virtual. Pulse Control+Alt+F1 para volver a su sesión de Ventanas-X.
La primera oración resalta la tecla clave determinada que se debe pulsar. La segunda resalta dos conjuntos de tres teclas claves que deben ser presionadas simultáneamente.
Si se discute el código fuente, los nombres de las clase, los métodos, las funciones, los nombres de variables y valores de retorno mencionados dentro de un párrafo serán presentados en Negrita-monoespaciado. Por ejemplo:
Las clases de archivo relacionadas incluyen filename para sistema de archivos, file para archivos y dir para directorios. Cada clase tiene su propio conjunto asociado de permisos.
Negrita proporcional
Esta denota palabras o frases encontradas en un sistema, incluyendo nombres de aplicación, texto de cuadro de diálogo, botones etiquetados, etiquetas de cajilla de verificación y botón de radio; títulos de menú y títulos del sub-menú. Por ejemplo:
Seleccionar SistemaPreferenciasRatón desde la barra del menú principal para lanzar Preferencias de Ratón. En la pestaña de Botones, haga clic en la cajilla ratón de mano izquierda y luego haga clic en Cerrar para cambiar el botón principal del ratón de la izquierda a la derecha (adecuando el ratón para la mano izquierda).
Para insertar un caracter especial en un archivo de gedit, seleccione desde la barra del menú principal AplicacionesAccessoriesMapa de caracteres. Luego, desde la barra de menúes de mapa de caracteres elija BúsquedaHallar…, teclee el nombre del caracter en el campo Búsqueda y haga clic en Siguiente. El caracter buscado se resaltará en la Tabla de caracteres. Haga doble clic en este caracter resaltado para colocarlo en el campo de Texto para copiar y luego haga clic en el botón de Copiar. Ahora regrese a su documento y elija EditarPegar desde la barra de menú de gedit.
El texto anterior incluye nombres de aplicación; nombres y elementos del menú de todo el sistema; nombres de menú de aplicaciones específicas y botones y texto hallados dentro de una interfaz gráfica de usuario, todos presentados en negrita proporcional y distinguibles por contexto.
Itálicas-negrita monoespaciado o Itálicas-negrita proporcional
Ya sea negrita monoespaciado o negrita proporcional, la adición de itálicas indica texto reemplazable o variable. Las itálicas denotan texto que usted no escribe literalmente o texto mostrado que cambia dependiendo de la circunstancia. Por ejemplo:
Para conectar a una máquina remota utilizando ssh, teclee ssh nombredeusuario@dominio.nombre en un intérprete de comandos de shell. Si la máquina remota es example.com y su nombre de usuario en esa máquina es john, teclee ssh john@example.com.
El comando mount -o remount file-system remonta el sistema de archivo llamado. Por ejemplo, para volver a montar el sistema de archivo /home, el comando es mount -o remount /home.
Para ver la versión de un paquete actualmente instalado, utilice el comando rpm -q paquete. Éste entregará el resultado siguiente: paquete-versión-lanzamiento.
Observe las palabras en itálicas y negrita sobre — nombre de usuario, domain.name, sistema de archivo, paquete, versión y lanzamiento. Cada palabra es un marcador de posición, tanto para el texto que usted escriba al ejecutar un comando como para el texto mostrado por el sistema.
Aparte del uso estándar para presentar el título de un trabajo, las itálicas denotan el primer uso de un término nuevo e importante. Por ejemplo:
Publican es un sistema de publicación de DocBook.

3.2. Convenciones del documento

Los mensajes de salida de la terminal o fragmentos de código fuente se distinguen visualmente del texto circundante.
Los mensajes de salida enviados a una terminal se muestran en romano monoespaciado y se presentan así:
books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs
Los listados de código fuente también se muestran en romano monoespaciado, pero se presentan y resaltan de la siguiente manera:
package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
}

3.3. Notas y Advertencias

Finalmente, utilizamos tres estilos visuales para llamar la atención sobre la información que de otro modo se podría pasar por alto.

Nota

Una nota es una sugerencia, atajo o enfoque alternativo para una tarea determinada. Ignorar una nota no debería tener consecuencias negativas, pero podría perderse de algunos trucos que pueden facilitarle las cosas.

Importante

Los cuadros con el título de importante dan detalles de cosas que se pueden pasar por alto fácilmente: cambios de configuración únicamente aplicables a la sesión actual, o servicios que necesitan reiniciarse antes de que se aplique una actualización. Ignorar estos cuadros no ocasionará pérdida de datos, pero puede causar enfado y frustración.

Advertencia

Las advertencias no deben ignorarse. Ignorarlas muy probablemente ocasionará pérdida de datos.

4. Comentarios

S usted encuentra un error tipográfico en este manual, o si o ha pensado en una forma de mejorar este manual, nos gustaria escuchar sobre usted! Po favor envie un informe a Bugzilla relacionado al producto Fedora Documentation.
Cuando envíe un informe, asegúrese de proveer la siguiente información:
  • Identificador del Manual: system-administrator's-guide
  • Versión número: 17
Si usted tiene una sugerencia para mejorar la documetación, trate de ser lo más específico posible al describirla. Si usted ha encontrado un error, por favor incluya el número de la secciIón y una sección del texto circundante, para poder localizar el error con facilidad.

5. Agradecimientos

Algunas porciones de este texto aparecieron primero en la Guía de implementación, copyright © 2007 Red Hat, Inc., disponible en http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/index.html.
Sección 17.6, “Monitoring Performance with Net-SNMP” se basa en un artículo escrito por Michael Solberg.
A los autores del presente libro les gustaría agradecer a las siguientes personas por sus valiosas contribuciones: Adam Tkáč, Andrew Fitzsimon, Andrius Benokraitis, Brian Cleary Edward Bailey, Garrett LeSage, Jeffrey Fearn, Joe Orton, Joshua Wulf, Karsten Wade, Lucy Ringland, Marcela Mašláňová, Mark Johnson, Michael Behm, Miroslav Lichvár, Radek Vokál, Rahul Kavalapara, Rahul Sundaram, Sandra Moore, Zbyšek Mráz, Jan Včelák, Peter Hutterer, T.C. Hollingsworth y James Antill, entre muchos otros.

Parte I. Configuración básica del sistema

Capítulo 1. Configurando el Lenguaje y el Teclado

Fedora 17 se distribuye con la herramienta de configuración Región and Lenguajel, la cual le permite configurar las disposiciones del teclado, el lenguaje de su ambiente de escritorio, y otras configuraciones regionales. Para utilizar la herramienta, abra la ventana de Configuraciones del Sistema seleccionando AplicacionesHerramientas del SistemaConfiguraciones del Sistema a partir del menu Actividades, y seleccione Región y Lenguaje.

1.1. Cambiando el lenguaje

Para configurar el lenguaje de su escritorio, selecione la etiqueta Lenguaje en la aplicación Región y Lenguaje. Usted vera una corta lista de lenguajes comunes.
Cambiando el lenguaje
Cambiando el lenguaje
Figura 1.1. Cambiando el lenguaje

Por omisión, esta lista contiene solo unos pocos lenguajes disponibles. Para agregar otros lenguajes haga click en el botón + (el signo de adición) que está debajo de la lista. Se abre una ventana de diálogo, la cual le permite seleccionar el lenguaje deseado. La region de ingreso de datos en la parte inferior de la ventana de diálogo le permite reducir el numero de opciones presentadas al filtrar las primeras letras que forman parte del nombre del lenguaje buscado (por ejemplo, slov por el lenguaje Slovak. Una vez que usted escoge el lenguaje, haga clic en el boton Selecionar para confirmar su opción.
Agregando otro lenguaje
Agregando un lenguaje
Figura 1.2. Agregando otro lenguaje

Para escoger un lenguaje en particular de la lista, haga clic rn su nombre para seleccionarlo. Los cambios se harán efectivos la próxima vez que usted se conecte al sistema.

1.2. Cambiando la Fecha, la Hora y el Formato Numérico

Para cmabiar los formatos de la fecha, la hora, los numéros y la moneda, selecione la etiqueta Formatos de la aplicación Región y Lenguaje. Used verá una corta lista de los formatos disponibles.
Cambiando los formatos de la fecha, la hora y los números
Cambiando los formatos de la fecha, la hora y los números
Figura 1.3. Cambiando los formatos de la fecha, la hora y los números

Por omisión esta lista solo contiene un pequeño número de los formatos disponibles. Para agregar otro formato, haga clic en el botón + (el signo de adición) en la parte inferior de la lista. aparece una ventana de diálogo, que le permite seleccionar el formato deseado de acuerdo con una región. El campo de ingreso de datos en la parte inferior de de la ventana de diálogo le permite, reducir el número de opciones presentadas, esto al introducir unas pocas letras del nombre de la región (por ejemplo, slov por Slovakia). Una vez que usted seleccione un región, haga clic en el botón Select para confirmar la opción seleccionada.
Agregando un formato
Agregando un formato
Figura 1.4. Agregando un formato

Para escoger un formato de la lista en particular, haga clic en su nombre para seleccionarlo. Los cambios serán efectivos la próxima vez que ingrese al sistema.

1.3. Cambiando la disposición del teclado

Aunque el programa de instalación le permite al administrador del sistema configurar una disposición del teclado durante la instalación del sistema, la configuración predefinida puede no siempre satisfacer sus necesidades actuales. Para cambiar el teclado predefinido, selecione la etiqueta Disposiciones de la aplicación Región y Lenguaje. Se le presentará una lista con las disposiciones que estan activadas.
Cambiando la disposición del teclado
Cambiando la disposición del teclado
Figura 1.5. Cambiando la disposición del teclado

Para agregar una disposición a la lista, haga clic en el boton + (el signo de adición) en la parte inférior de la lista. aparece una ventana de diálogo, que le permite seleccionar la disposición de teclado deseada. El campo de ingreso de datos en la parte inférior de la ventana de diálogo le permite reducir el numero de opciones presentadas al introducir algunas letras del nombre de la disposición (por ejemplo, slov por una disposición Slovak ). Una vez que usted seleccione una disposición, haga clic en el botón Agregar para confirmar su selección.
Agregando una disposición de teclado
Agregando una disposición de teclado
Figura 1.6. Agregando una disposición de teclado

La primera disposición en la lista se considera siempre la predefinida. Para mover una disposición particular hacia arriba o hacia abajo en la lista, seleccione y haga clic en los botones (la flecha hacia arriba) o (la flecha hacia abajo) respectivamente. Para borrar una disposición, haga clic en el botón (o sea el signo de suatracción). Adicionalmente, seleccionando un botón de opción en el lado derecho de la ventana, usted puede escoger si quiere usar una disposición diferente en cada ventana en la que este trabajando o si quiere la misma disposición para todas las ventanas.
Cuando hay mas de una disposición activa, aparece un indicador de teclado en el pánel, para permitirle cambiar de una disposición a otra.
El indicador de la disposición del teclado
El indicador de la disposición del teclado
Figura 1.7. El indicador de la disposición del teclado

1.4. Viendo la configuración Actual

Para ver la configuracion actual, seleccione la etiqueta Sistema de la aplicación Region and Lenguaje application. You will be presented with a comparison of your own configuration and system-wide settings.
Viendo la configuración actual
Viendo la configuración actual
Figura 1.8. Viendo la configuración actual

Capítulo 2. Configuración de la Fecha y Hora

Este capitulo cubre la configuración de fecha y hora en el sistema Fedora, tanto manual y utilizando el Protocolo de Tiempo de Red (NTP), así como la configuración de las zonas de tiempo adecuadas. Los dos métodos cubiertos son: la configuración de la fecha y hora usando la herramienta de configuración Fecha y Hora , y realizando esto por la linea de comando.

2.1. Usando la herramienta de configuración de fecha y hora

Fedora 17 se distribuye con la herramienta de configuracion Fecha y Hora, la cual le permite cambiar la fecha y la hora del sistema, para configurar la zona horaria utilizada por el systema, y para activar el daemon del protocolo Network Time para sincronizar el reloj del sistema con un servidor de horario. Para arrancar la herramienta, puede escoger seleccionando AplicacionesHerramienta del SystemaConfiguracion del Systema a partir del menu Actividades y seleccione el icono de Fecha y Hora, o bien seleccione con un clic, la hora en el panel Configuración de Fecha y Hora a partir del menu que se despliega.
Herramienta de configuración de la Fecha y la Hora
Herramienta de configuración de la Fecha y la Hora
Figura 2.1. Herramienta de configuración de la Fecha y la Hora

La herramienta esta preparada para aceptar el cambio de la configuración activa. Est es debido a que solo al usuario root se le permite cambiar la fecha y hora del systema. Para desbloquear la herramienta de configuración para efectuar los cambios, haga clic en el boton Desbloquear en la esquina superior derecha de la ventana, y proveer la contraseña correcta al ser requerida.
Para cambiar la hora actual de su sistema, tiene las opciones de configurar el sistema para que sea sincronizado via red o haciendo clic en el interruptor Hora de Red, o bien colocarla manualmente haciendo clic en las flechas que estan arriba y abajo de los numeros. También puede seleccionar la etiqueta 24-horas o bien AM/PM para activar o desactivar el formato horario de 24 horas.
Para cambiar la zona horaria, haga un clic en el mapa, o seleccione la región y ciudad de las listas desplegables Región y Ciudad.
Para cambiar la fecha actual del sistema, selecciona un mes de la lista abajo de la hora, y use las flechas hacia arriba y abajo para selecionar el día y el año.
Los cambios tomo efecto de inmediato.

2.2. Usando las herramientas de línea de comando

Fedora 17 provee herramientas de consola o terminal que le permiten configurar la fecha y la hora tanto manualmente asi como con la utilización del protocolo NTP.

2.2.1. Cambiando la fecha

Para cambiar la fecha del sistema, escriba lo siguiente en la consola o terminal como usuario root:
date +%D -s YYYY-MM-DD
…donde YYYY es el año escrito con 4 cifras, MM es el mes con dos cifras, y DD es el día del mes con dos cifras. Por ejemplo, para cambiar la fecha al 2 de Junio del 2010, escriba:
~]# date +%D -s 2010-06-02
Usted puede vérificar la fecha actual por medio del comando date sin ningun otro argumento adicional.

2.2.2. Cambiando la hora

Para cambiar la hora actual, utilice el siguiente comando como usuario root:
date +%T -s HH:MM:SS
…donde HH representa una hora, MM es un minuto, y SS es un segundo, todo esto escrito en un formato de dos cifras. Si el reloj de sus sistema esta configurado para utilizar UTC (Coordinated Universal Time - Sistema Coordinado Universal), agregue tambien la suiguiente opción:
date +%T -s HH:MM:SS -u
Para el caso, de configurar el reloj a las 11:26 PM usando el UTC, escriba:
~]# date +%T -s 23:26:00 -u
Usted puede vérificar la fecha actual por medio del comando date sin ningun otro argumento adicional.

2.2.3. Configurando el Protocolo de Tiempo en Red

Opuesto a la configuración manual descrita anteriormente, usted puede sincronizar el reloj con un servidor remoto a travez de la red usando el protocolo (NTP por sus siglas en Ingles). Para una sincronización de sola vez, use el comando ntpdate:
  1. Verifique que el servidor NTP sea accesible ejecutando el comando ntpdate de la siguiente manera:
    ntpdate -q server_address
    Por ejemplo, para conectarse al 0.fedora.pool.ntp.org, escriba:
    ~]$ ntpdate -q 0.fedora.pool.ntp.org
    server 204.15.208.61, stratum 2, offset -39.275438, delay 0.16083
    server 69.65.40.29, stratum 2, offset -39.269122, delay 0.17191
    server 148.167.132.201, stratum 2, offset -39.270239, delay 0.20482
    17 Oct 17:41:09 ntpdate[10619]: step time server 204.15.208.61 offset -39.275438 sec
  2. Cuando encuentre un servidor satisfactorio, en tanto que usuario root, emita el comando ntpdate seguido con una o mas direcciones de servidor:
    ntpdate server_address…
    Por ejemplo:
    ~]# ntpdate 0.fedora.pool.ntp.org 1.fedora.pool.ntp.org
    17 Oct 17:42:13 ntpdate[10669]: step time server 204.15.208.61 offset -39.275436 sec
    Si no se presenta un mensaje de error, el sistema esta configurado. Usted puede verificar la hora actual por medio del comando date sin ningun argumento adicional.
  3. En la mayoria de los casos estos pasos son suficientes. Solamente si usted realmente necesita que uno o mas servicios del sistema utilicen siempre la hora correcta, active ntpdate para que arranque al inicio corriendo el siguiente comando como usuario root:
    systemctl enable ntpdate.service
    Para mayor informacion acerca de los servicios del sistema y su configuración, referirse a Capítulo 8, Services and Daemons.

    Nota

    Si la sincronización con el servidor de tiempo falla al momento de inicio del sistema, usted puede encontrar los mensajes de error en /var/log/boot.log, intente adicionando la siguiente linea en el archivo /etc/sysconfig/network:
    NETWORKWAIT=1
Sin embargo, la manera mas conveniente es configurar el demonio ntpd para sincronizar automaticamente en el momento de inicio:
  1. As root, abra el archivo de configuración NTP /etc/ntp.conf en un editor de texto, si aún no existe se creará un nuevo archivo.
  2. Adiciona o edita la lista de servidores NTP publicos. Si usted esta usando Fedora 17,el archivo deberia contener las siguientes linea, pero usted puede adicionar o crecer la lista de acuerdo a sus necesidades:
    server 0.fedora.pool.ntp.org iburst
    server 1.fedora.pool.ntp.org iburst
    server 2.fedora.pool.ntp.org iburst

    Mejorando el desempeño de la sicronización inicial

    Para iniciar mas rápido la sincronización, se recomienda que la instrucción iburst sea adicionada al final de la linea de cada servidor.
  3. En el mismo archivo, adicione los permisos necesarios, dando uso sin restriciones solo al localhost:
    restrict default kod nomodify notrap nopeer noquery
    restrict -6 default kod nomodify notrap nopeer noquery
    restrict 127.0.0.1
    restrict -6 ::1
  4. Guarde los cambios, salga del editor, y reinicie el demonio NTP:
    systemctl restart ntpd.service
  5. Adicionalmente, asegurece que la instrucción ntpd inicie al encender el sistema:
    systemctl enable ntpd.service

2.3. Recursos adicionales

Para mayor información acerca de la configuración de la fecha y hora referirse a los siguentes recursos:

2.3.1. Documentación instalada

  • date(1) — La pagina del manual de la utilidad date.
  • ntpdate(8) — La pagina del manual de la utilidad ntpdate.
  • ntpd(8) — La pagina del manual del servicio ntpd.

Capítulo 3. Managing Users and Groups

The control of users and groups is a core element of Fedora system administration. This chapter explains how to add, manage, and delete users and groups in the graphical user interface and on the command line, and covers advanced topics, such as enabling password aging or creating group directories.

3.1. Introduction to Users and Groups

While users can be either people (meaning accounts tied to physical users) or accounts which exist for specific applications to use, groups are logical expressions of organization, tying users together for a common purpose. Users within a group can read, write, or execute files owned by that group.
Each user is associated with a unique numerical identification number called a user ID (UID). Likewise, each group is associated with a group ID (GID). A user who creates a file is also the owner and group owner of that file. The file is assigned separate read, write, and execute permissions for the owner, the group, and everyone else. The file owner can be changed only by root, and access permissions can be changed by both the root user and file owner.
Additionally, Fedora supports access control lists (ACLs) for files and directories which allow permissions for specific users outside of the owner to be set. Refer to For more information about this feature, refer to the Access Control Lists chapter of the Storage Administration Guide.

3.1.1. Grupos de usuario privado

Fedora uses a user private group (UPG) scheme, which makes UNIX groups easier to manage. A user private group is created whenever a new user is added to the system. It has the same name as the user for which it was created and that user is the only member of the user private group.
User private groups make it safe to set default permissions for a newly created file or directory, allowing both the user and the group of that user to make modifications to the file or directory.
The setting which determines what permissions are applied to a newly created file or directory is called a umask and is configured in the /etc/bashrc file. Traditionally on UNIX systems, the umask is set to 022, which allows only the user who created the file or directory to make modifications. Under this scheme, all other users, including members of the creator's group, are not allowed to make any modifications. However, under the UPG scheme, this group protection is not necessary since every user has their own private group.

3.1.2. Contraseñas Shadow

Especially in environments with multiple users, it is very important to use shadow passwords provided by the shadow-utils package to enhance the security of system authentication files. For this reason, the installation program enables shadow passwords by default.
The following is a list of the advantages shadow passwords have over the traditional way of storing passwords on UNIX-based systems:
  • Shadow passwords improve system security by moving encrypted password hashes from the world-readable /etc/passwd file to /etc/shadow, which is readable only by the root user.
  • Shadow passwords store information about password aging.
  • Shadow passwords allow the /etc/login.defs file to enforce security policies.
Most utilities provided by the shadow-utils package work properly whether or not shadow passwords are enabled. However, since password aging information is stored exclusively in the /etc/shadow file, any commands which create or modify password aging information do not work. The following is a list of utilities and commands that do not work without first enabling shadow passwords:
  • The chage utility.
  • The gpasswd utility.
  • The usermod command with the -e or -f option.
  • The useradd command with the -e or -f option.

3.2. Using the User Accounts Tool

The User Accounts configuration tool allows you to view, modify, add, and delete local users. To run the tool, select ApplicationsSystem ToolsSystem Settings from the Activities menu and click the User Accounts icon.
The User Accounts configuration tool
The User Accounts configuration tool
Figura 3.1. The User Accounts configuration tool

By default, the tool only allows you to change certain settings regarding your account. This is because only the root user is allowed to configure users and groups. To unlock the configuration tool for all kinds of changes, click the Unlock button in the top-right corner of the window, and provide the correct password when prompted.

3.2.1. Configuring an Account

To change the image associated with an account, click the icon next to the account name and either select a picture from the pulldown list, or click Browse for more pictures... to use an image from your local drive.
To change the name associated with an account, click the name next to the icon to edit it.
To change the account type, click the text next to the Account type label. Note that this change requires the configuration tool to be unlocked even if you are changing your own account.
To change the default language for an account, click the text next to the Language label and select a language from the list.
To change the password, click the field next to the Password label. A dialog box appears, allowing you to set the new password. Note that the current password must be provided in order to confirm the change. Once done, click the Change button to save the change.
Changing the password
Changing the password
Figura 3.2. Changing the password

Password security advice

It is advisable to use a much longer password, as this makes it more difficult for an intruder to guess it and access the account without permission. It is also recommended that the password not be based on a dictionary term: use a combination of letters, numbers and special characters.
Finally, to set up automatic login for a particular account, enable the Automatic Login switch. The configuration tool must be unlocked to make this change.

3.2.2. Añadir un nuevo usuario

To add a new user, make sure the configuration tool is unlocked, and click the + button (that is, the plus sign) below the account list. A dialog window appears, allowing you to supply user details.
Creating a new account
Creating a new account
Figura 3.3. Creating a new account

Take the following steps to create an account:
  1. Select an account type from the Account type pulldown list. Available account types are Administrator and Standard (the default option).
  2. Fill in the Full name input field to set the name associated with the account. This name will be used by the login manager, and will be displayed on the panel.
  3. Either select a suggested username from the Username pulldown list, or fill in the corresponding input field.
  4. Click the Create button to confirm the settings.
Fedora uses a user private group (UPG) scheme. The UPG scheme does not add or change anything in the standard UNIX way of handling groups; it offers a new convention. Whenever you create a new user, a unique group with the same name as the user is created.
When a new account is created, default configuration files are copied from the /etc/skel/ directory into the new home directory.

3.2.3. Removing a User

To remove a user, make sure the configuration tool is unlocked, select the desired account from the account list, and click the button (that is, the minus sign) below the account list. A dialog window appears, allowing you to confirm or cancel the change.
Removing an account
Removing an account
Figura 3.4. Removing an account

To delete files and directories that belong to the user (that is, the home directory, mail spool, and temporary files), click the Delete Files button. To keep these files intact and only delete the user account, click Keep Files. To abort the deletion, click Cancel.

3.3. Using the User Manager Tool

The User Manager application allows you to view, modify, add, and delete local users and groups in the graphical user interface. To start the application, either select ApplicationsOtherUsers and Groups from the Activities menu, or type system-config-users at a shell prompt. Note that unless you have superuser privileges, the application will prompt you to authenticate as root.

3.3.1. Viewing Users and Groups

The main window of the User Manager is divided into two tabs: The Users tab provides a list of local users along with additional information about their user ID, primary group, home directory, login shell, and full name. The Groups tab provides a list of local groups with information about their group ID and group members.
Viewing users and groups
Viewing users and groups
Figura 3.5. Viewing users and groups

To find a specific user or group, type the first few letters of the name in the Search filter field and either press Enter, or click the Apply filter button. You can also sort the items according to any of the available columns by clicking the column header.
Fedora reserves user and group IDs below 1000 for system users and groups. By default, the User Manager does not display the system users. To view all users and groups, select EditPreferences to open the Preferences dialog box, and clear the Hide system users and groups check box.

3.3.2. Añadir un nuevo usuario

To add a new user, click the Add User button. A window as shown in Figura 3.6, “Adding a new user” appears.
Adding a new user
Adding a new user
Figura 3.6. Adding a new user

The Add New User dialog box allows you to provide information about the newly created user. In order to create a user, enter the username and full name in the appropriate fields and then type the user's password in the Password and Confirm Password fields. The password must be at least six characters long.

Password security advice

It is advisable to use a much longer password, as this makes it more difficult for an intruder to guess it and access the account without permission. It is also recommended that the password not be based on a dictionary term: use a combination of letters, numbers and special characters.
The Login Shell pulldown list allows you to select a login shell for the user. If you are not sure which shell to select, accept the default value of /bin/bash.
By default, the User Manager application creates the home directory for a new user in /home/username/. You can choose not to create the home directory by clearing the Create home directory check box, or change this directory by editing the content of the Home Directory text box. Note that when the home directory is created, default configuration files are copied into it from the /etc/skel/ directory.
Fedora uses a user private group (UPG) scheme. Whenever you create a new user, a unique group with the same name as the user is created by default. If you do not want to create this group, clear the Create a private group for the user check box.
To specify a user ID for the user, select Specify user ID manually. If the option is not selected, the next available user ID above 1000 is assigned to the new user. Because Fedora reserves user IDs below 1000 for system users, it is not advisable to manually assign user IDs 1–999.
Clicking the OK button creates the new user. To configure more advanced user properties, such as password expiration, modify the user's properties after adding the user.

3.3.3. Añadir un nuevo grupo

To add a new user group, select Add Group from the toolbar. A window similar to Figura 3.7, “Nuevo grupo” appears. Type the name of the new group. To specify a group ID for the new group, select Specify group ID manually and select the GID. Note that Fedora also reserves group IDs lower than 1000 for system groups.
Nuevo grupo
Crear un nuevo grupo
Figura 3.7. Nuevo grupo

Click OK to create the group. The new group appears in the group list.

3.3.4. Modificar las propiedades del usuario

To view the properties of an existing user, click on the Users tab, select the user from the user list, and click Properties from the menu (or choose FileProperties from the pulldown menu). A window similar to Figura 3.8, “Propiedades del usuario” appears.
Propiedades del usuario
Modificar las propiedades del usuario
Figura 3.8. Propiedades del usuario

The User Properties window is divided into multiple tabbed pages:
  • User Data — Shows the basic user information configured when you added the user. Use this tab to change the user's full name, password, home directory, or login shell.
  • Account Info — Select Enable account expiration if you want the account to expire on a certain date. Enter the date in the provided fields. Select Local password is locked to lock the user account and prevent the user from logging into the system.
  • Password Info — Displays the date that the user's password last changed. To force the user to change passwords after a certain number of days, select Enable password expiration and enter a desired value in the Days before change required: field. The number of days before the user's password expires, the number of days before the user is warned to change passwords, and days before the account becomes inactive can also be changed.
  • Groups — Allows you to view and configure the Primary Group of the user, as well as other groups that you want the user to be a member of.

3.3.5. Modificar las propiedades del grupo

To view the properties of an existing group, select the group from the group list and click Properties from the menu (or choose FileProperties from the pulldown menu). A window similar to Figura 3.9, “Propiedades del grupo” appears.
Propiedades del grupo
Modificar las propiedades del grupo
Figura 3.9. Propiedades del grupo

The Group Users tab displays which users are members of the group. Use this tab to add or remove users from the group. Click OK to save your changes.

3.4. Using Command Line Tools

The easiest say to manage users and groups on Fedora is to use the User Manager application as described in Sección 3.3, “Using the User Manager Tool”. However, if you prefer command line tools or do not have the X Window System installed, you can use command line utilities that are listed in Tabla 3.1, “Command line utilities for managing users and groups”.
Tabla 3.1. Command line utilities for managing users and groups
Utilities Descripción
useradd, usermod, userdel Standard utilities for adding, modifying, and deleting user accounts.
groupadd, groupmod, groupdel Standard utilities for adding, modifying, and deleting groups.
gpasswd Standard utility for administering the /etc/group configuration file.
pwck, grpck Utilities that can be used for verification of the password, group, and associated shadow files.
pwconv, pwunconv Utilities that can be used for the conversion of passwords to shadow passwords, or back from shadow passwords to standard passwords.

3.4.1. Añadir un nuevo usuario

To add a new user to the system, typing the following at a shell prompt as root:
useradd [options] username
…where options are command line options as described in Tabla 3.2, “useradd command line options”.
By default, the useradd command creates a locked user account. To unlock the account, run the following command as root to assign a password:
passwd username
Optionally, you can set password aging policy. Refer to Sección 3.4.3, “Enabling Password Aging” for information on how to enable password aging.
Tabla 3.2. useradd command line options
Opciones Descripción
-c 'comment' comment can be replaced with any string. This option is generally used to specify the full name of a user.
-d home_directory Home directory to be used instead of default /home/username/.
-e date Date for the account to be disabled in the format YYYY-MM-DD.
-f days Number of days after the password expires until the account is disabled. If 0 is specified, the account is disabled immediately after the password expires. If -1 is specified, the account is not be disabled after the password expires.
-g group_name Nombre o número del grupo para el grupo predeterminado del usuario. El grupo debe existir antes de que sea especificado aquí.
-G group_list Lista de nombres de los grupos adicionales (además del predeterminado), separados por comas, de los cuales el usuario es miembro. Los grupos deben existir antes que sea especificado aquí.
-m Crea el directorio principal si no existe
-M No crea el directorio principal.
-N No crea un grupo privado de usuario para el usuario
-p password The password encrypted with crypt.
-r Create a system account with a UID less than 1000 and without a home directory.
-s User's login shell, which defaults to /bin/bash.
-u uid User ID for the user, which must be unique and greater than 999.

Explicación del proceso

The following steps illustrate what happens if the command useradd juan is issued on a system that has shadow passwords enabled:
  1. A new line for juan is created in /etc/passwd:
    juan:x:501:501::/home/juan:/bin/bash
    The line has the following characteristics:
    • It begins with the username juan.
    • There is an x for the password field indicating that the system is using shadow passwords.
    • A UID greater than 999 is created. Under Fedora, UIDs below 1000 are reserved for system use and should not be assigned to users.
    • A GID greater than 999 is created. Under Fedora, GIDs below 1000 are reserved for system use and should not be assigned to users.
    • The optional GECOS information is left blank.
    • The home directory for juan is set to /home/juan/.
    • The default shell is set to /bin/bash.
  2. A new line for juan is created in /etc/shadow:
    juan:!!:14798:0:99999:7:::
    The line has the following characteristics:
    • It begins with the username juan.
    • Two exclamation marks (!!) appear in the password field of the /etc/shadow file, which locks the account.

      Nota

      If an encrypted password is passed using the -p flag, it is placed in the /etc/shadow file on the new line for the user.
    • Se configura la contraseña para que no caduque nunca.
  3. A new line for a group named juan is created in /etc/group:
    juan:x:501:
    A group with the same name as a user is called a user private group. For more information on user private groups, refer to Sección 3.1.1, “Grupos de usuario privado”.
    The line created in /etc/group has the following characteristics:
    • It begins with the group name juan.
    • An x appears in the password field indicating that the system is using shadow group passwords.
    • The GID matches the one listed for user juan in /etc/passwd.
  4. A new line for a group named juan is created in /etc/gshadow:
    juan:!::
    The line has the following characteristics:
    • It begins with the group name juan.
    • An exclamation mark (!) appears in the password field of the /etc/gshadow file, which locks the group.
    • Todos los otros campos quedan en blanco.
  5. A directory for user juan is created in the /home/ directory:
    ~]# ls -l /home
    total 4
    drwx------. 4 juan juan 4096 Mar  3 18:23 juan
    This directory is owned by user juan and group juan. It has read, write, and execute privileges only for the user juan. All other permissions are denied.
  6. The files within the /etc/skel/ directory (which contain default user settings) are copied into the new /home/juan/ directory:
    ~]# ls -la /home/juan
    total 28
    drwx------. 4 juan juan 4096 Mar  3 18:23 .
    drwxr-xr-x. 5 root root 4096 Mar  3 18:23 ..
    -rw-r--r--. 1 juan juan   18 Jun 22  2010 .bash_logout
    -rw-r--r--. 1 juan juan  176 Jun 22  2010 .bash_profile
    -rw-r--r--. 1 juan juan  124 Jun 22  2010 .bashrc
    drwxr-xr-x. 2 juan juan 4096 Jul 14  2010 .gnome2
    drwxr-xr-x. 4 juan juan 4096 Nov 23 15:09 .mozilla
At this point, a locked account called juan exists on the system. To activate it, the administrator must next assign a password to the account using the passwd command and, optionally, set password aging guidelines.

3.4.2. Añadir un nuevo grupo

To add a new group to the system, type the following at a shell prompt as root:
groupadd [options] group_name
…where options are command line options as described in Tabla 3.3, “groupadd command line options”.
Tabla 3.3. groupadd command line options
Opciones Descripción
-f, --force When used with -g gid and gid already exists, groupadd will choose another unique gid for the group.
-g gid Group ID for the group, which must be unique and greater than 999.
-K, --key key=value Override /etc/login.defs defaults.
-o, --non-unique Allow to create groups with duplicate.
-p, --password password Use this encrypted password for the new group.
-r Create a system group with a GID less than 1000.

3.4.3. Enabling Password Aging

For security reasons, it is advisable to require users to change their passwords periodically. This can either be done when adding or editing a user on the Password Info tab of the User Manager application, or by using the chage command.

Shadow passwords must be enabled to use chage

Shadow passwords must be enabled to use the chage command. For more information, see Sección 3.1.2, “Contraseñas Shadow”.
To configure password expiration for a user from a shell prompt, run the following command as root:
chage [options] username
…where options are command line options as described in Tabla 3.4, “chage command line options”. When the chage command is followed directly by a username (that is, when no command line options are specified), it displays the current password aging values and allows you to change them interactively.
Tabla 3.4. chage command line options
Opciones Descripción
-d days Specifies the number of days since January 1, 1970 the password was changed.
-E date Especifica la fecha en la cual la cuenta es bloqueada, en el formato AAAA-MM-DD. También se puede usar el número de días transcurridos desde el 1 de enero de 1970 en lugar de la fecha.
-I days Specifies the number of inactive days after the password expiration before locking the account. If the value is 0, the account is not locked after the password expires.
-l Lists current account aging settings.
-m days Specify the minimum number of days after which the user must change passwords. If the value is 0, the password does not expire.
-M days Specify the maximum number of days for which the password is valid. When the number of days specified by this option plus the number of days specified with the -d option is less than the current day, the user must change passwords before using the account.
-W days Especifica el número de días antes de la fecha de expiración de la contraseña para advertir al usuario.

You can configure a password to expire the first time a user logs in. This forces users to change passwords immediately.
  1. Set up an initial password. There are two common approaches to this step: you can either assign a default password, or you can use a null password.
    To assign a default password, type the following at a shell prompt as root:
    passwd username
    To assign a null password instead, use the following command:
    passwd -d username

    Avoid using null passwords whenever possible

    Using a null password, while convenient, is a highly insecure practice, as any third party can log in first and access the system using the insecure username. Always make sure that the user is ready to log in before unlocking an account with a null password.
  2. Force immediate password expiration by running the following command as root:
    chage -d 0 username
    Este comando coloca el valor para la fecha en que la contraseña fué cambiada la última vez (Enero 1, 1970). Este valor obliga a la expiración inmediata de la contraseña sin tomar en cuenta la política de vencimiento, si existe alguna.
Upon the initial log in, the user is now prompted for a new password.

3.4.4. Enabling Automatic Logouts

Especially when the user is logged in as root, an unattended login session may pose a significant security risk. To reduce this risk, you can configure the system to automatically log out idle users after a fixed period of time:
  1. Make sure the screen package is installed. You can do so by running the following command as root:
    yum install screen
    For more information on how to install packages in Fedora, refer to Sección 4.2.4, “Installing Packages”.
  2. As root, add the following line at the beginning of the /etc/profile file to make sure the processing of this file cannot be interrupted:
    trap "" 1 2 3 15
  3. Add the following lines at the end of the /etc/profile file to start a screen session each time a user logs in to a virtual console or remotely:
    SCREENEXEC="screen"
    if [ -w $(tty) ]; then
      trap "exec $SCREENEXEC" 1 2 3 15
      echo -n 'Starting session in 10 seconds'
      sleep 10
      exec $SCREENEXEC
    fi
    Note that each time a new session starts, a message will be displayed and the user will have to wait ten seconds. To adjust the time to wait before starting a session, change the value after the sleep command.
  4. Add the following lines to the /etc/screenrc configuration file to close the screen session after a given period of inactivity:
    idle 120 quit
    autodetach off
    This will set the time limit to 120 seconds. To adjust this limit, change the value after the idle directive.
    Alternatively, you can configure the system to only lock the session by using the following lines instead:
    idle 120 lockscreen
    autodetach off
    This way, a password will be required to unlock the session.
The changes take effect the next time a user logs in to the system.

3.4.5. Creating Group Directories

System administrators usually like to create a group for each major project and assign people to the group when they need to access that project's files. With this traditional scheme, file managing is difficult; when someone creates a file, it is associated with the primary group to which they belong. When a single person works on multiple projects, it becomes difficult to associate the right files with the right group. However, with the UPG scheme, groups are automatically assigned to files created within a directory with the setgid bit set. The setgid bit makes managing group projects that share a common directory very simple because any files a user creates within the directory are owned by the group which owns the directory.
For example, a group of people need to work on files in the /opt/myproject/ directory. Some people are trusted to modify the contents of this directory, but not everyone.
  1. As root, create the /opt/myproject/ directory by typing the following at a shell prompt:
    mkdir /opt/myproject
  2. Add the myproject group to the system:
    groupadd myproject
  3. Associate the contents of the /opt/myproject/ directory with the myproject group:
    chown root:myproject /opt/myproject
  4. Allow users to create files within the directory, and set the setgid bit:
    chmod 2775 /opt/myproject
At this point, all members of the myproject group can create and edit files in the /opt/myproject/ directory without the administrator having to change file permissions every time users write new files. To verify that the permissions have been set correctly, run the following command:
~]# ls -l /opt
total 4
drwxrwsr-x. 3 root myproject 4096 Mar  3 18:31 myproject

3.5. Recursos adicionales

Refer to the following resources for more information about managing users and groups.

3.5.1. Documentación instalada

For information about various utilities for managing users and groups, refer to the following manual pages:
  • chage(1) — A command to modify password aging policies and account expiration.
  • gpasswd(1) — A command to administer the /etc/group file.
  • groupadd(8) — A command to add groups.
  • grpck(8) — A command to verify the /etc/group file.
  • groupdel(8) — A command to remove groups.
  • groupmod(8) — A command to modify group membership.
  • pwck(8) — A command to verify the /etc/passwd and /etc/shadow files.
  • pwconv(8) — A tool to convert standard passwords to shadow passwords.
  • pwunconv(8) — A tool to convert shadow passwords to standard passwords.
  • useradd(8) — A command to add users.
  • userdel(8) — A command to remove users.
  • usermod(8) — A command to modify users.
For information about related configuration files, see:
  • group(5) — The file containing group information for the system.
  • passwd(5) — The file containing user information for the system.
  • shadow(5) — The file containing passwords and account expiration information for the system.

Parte II. Gestión de paquetes

Todo software en un sistema Fedora está dividido en paquetes RPM, los cuales pueden ser instalados, actualizados o eliminados. Este apartado describe cómo manejar estos paquetes en Fedora usando tanto el gestor de paquetes Yum como PackageKit.

Capítulo 4. Yum

Yum is the The Fedora Project package manager that is able to query for information about packages, fetch packages from repositories, install and uninstall packages using automatic dependency resolution, and update an entire system to the latest available packages. Yum performs automatic dependency resolution on packages you are updating, installing or removing, and thus is able to automatically determine, fetch and install all available dependent packages. Yum can be configured with new, additional repositories, or package sources, and also provides many plug-ins which enhance and extend its capabilities. Yum is able to perform many of the same tasks that RPM can; additionally, many of the command line options are similar. Yum enables easy and simple package management on a single machine or on groups of them.

Gestión segura de paquetes con paquetes firmados con GPG

Yum provides secure package management by enabling GPG (Gnu Privacy Guard; also known as GnuPG) signature verification on GPG-signed packages to be turned on for all package repositories (i.e. package sources), or for individual repositories. When signature verification is enabled, Yum will refuse to install any packages not GPG-signed with the correct key for that repository. This means that you can trust that the RPM packages you download and install on your system are from a trusted source, such as The Fedora Project, and were not modified during transfer. Refer to Sección 4.3, “Configurando Yum y repositorios de Yum” for details on enabling signature-checking with Yum, or Sección B.3, “Revisando la firma de los paquetes” for information on working with and verifying GPG-signed RPM packages in general.
Yum also enables you to easily set up your own repositories of RPM packages for download and installation on other machines.
Learning Yum is a worthwhile investment because it is often the fastest way to perform system administration tasks, and it provides capabilities beyond those provided by the PackageKit graphical package management tools. Refer to Capítulo 5, PackageKit for details on using PackageKit.

Yum y privilegios de superusuario

You must have superuser privileges in order to use yum to install, update or remove packages on your system. All examples in this chapter assume that you have already obtained superuser privileges by using either the su or sudo command.

4.1. Para la comprobación y actualización de paquetes

4.1.1. comprobación de actualizaciones

To see which installed packages on your system have updates available, use the following command:
yum check-update
Por ejemplo:
~]# yum check-update
Loaded plugins: langpacks, presto, refresh-packagekit

PackageKit.x86_64                    0.6.14-2.fc15                 fedora
PackageKit-command-not-found.x86_64  0.6.14-2.fc15                 fedora
PackageKit-device-rebind.x86_64      0.6.14-2.fc15                 fedora
PackageKit-glib.x86_64               0.6.14-2.fc15                 fedora
PackageKit-gstreamer-plugin.x86_64   0.6.14-2.fc15                 fedora
PackageKit-gtk-module.x86_64         0.6.14-2.fc15                 fedora
PackageKit-gtk3-module.x86_64        0.6.14-2.fc15                 fedora
PackageKit-yum.x86_64                0.6.14-2.fc15                 fedora
PackageKit-yum-plugin.x86_64         0.6.14-2.fc15                 fedora
gdb.x86_64                           7.2.90.20110429-36.fc15       fedora
kernel.x86_64                        2.6.38.6-26.fc15              fedora
rpm.x86_64                           4.9.0-6.fc15                  fedora
rpm-libs.x86_64                      4.9.0-6.fc15                  fedora
rpm-python.x86_64                    4.9.0-6.fc15                  fedora
yum.noarch                           3.2.29-5.fc15                 fedora
The packages in the above output are listed as having updates available. The first package in the list is PackageKit, the graphical package manager. The line in the example output tells us:
  • PackageKit — the name of the package
  • x86_64 — the CPU architecture the package was built for
  • 0.6.14 — la versión del paquete actualizado a ser instalado.
  • fedora — the repository in which the updated package is located
The output also shows us that we can update the kernel (the kernel package), Yum and RPM themselves (the yum and rpm packages), as well as their dependencies (such as the kernel-firmware, rpm-libs, and rpm-python packages), all using yum.

4.1.2. Actualizando paquetes

You can choose to update a single package, multiple packages, or all packages at once. If any dependencies of the package (or packages) you update have updates available themselves, then they are updated too.

Actualizando un solo paquete

To update a single package, run the following command as root:
yum update package_name
For example, to update the udev package, type:
~]# yum update udev
Loaded plugins: langpacks, presto, refresh-packagekit
Updating Red Hat repositories.
INFO:rhsm-app.repolib:repos updated: 0
Setting up Update Process
Resolving Dependencies
--> Running transaction check
---> Package gdb.x86_64 0:7.2.90.20110411-34.fc15 will be updated
---> Package gdb.x86_64 0:7.2.90.20110429-36.fc15 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

================================================================================
 Package     Arch         Version                          Repository      Size
================================================================================
Updating:
 gdb         x86_64       7.2.90.20110429-36.fc15          fedora         1.9 M

Transaction Summary
================================================================================
Upgrade       1 Package(s)

Total download size: 1.9 M
Is this ok [y/N]:
Esta salida contiene varios elementos de interés:
  1. Loaded plugins:yum always informs you which Yum plug-ins are installed and enabled. Here, yum is using the langpacks, presto, and refresh-packagekit plug-ins. Refer to Sección 4.4, “Yum Plug-ins” for general information on Yum plug-ins, or to Sección 4.4.3, “Plug-in Descriptions” for descriptions of specific plug-ins.
  2. gdb.x86_64 — you can download and install new gdb package.
  3. yum presents the update information and then prompts you as to whether you want it to perform the update; yum runs interactively by default. If you already know which transactions yum plans to perform, you can use the -y option to automatically answer yes to any questions yum may ask (in which case it runs non-interactively). However, you should always examine which changes yum plans to make to the system so that you can easily troubleshoot any problems that might arise.
    If a transaction does go awry, you can view Yum's transaction history by using the yum history command as described in Sección 4.2.6, “Working with Transaction History”.

Updating and installing kernels with Yum

yum always installs a new kernel in the same sense that RPM installs a new kernel when you use the command rpm -i kernel. Therefore, you do not need to worry about the distinction between installing and upgrading a kernel package when you use yum: it will do the right thing, regardless of whether you are using the yum update or yum install command.
When using RPM, on the other hand, it is important to use the rpm -i kernel command (which installs a new kernel) instead of rpm -u kernel (which replaces the current kernel). Refer to Sección B.2.2, “Installing and Upgrading” for more information on installing/updating kernels with RPM.

Actualizando todos los paquetes y sus dependencias

To update all packages and their dependencies, simply enter yum update (without any arguments):
yum update

Actualizando Paquetes de Seguridad

Discovering which packages have security updates available and then updating those packages quickly and easily is important. Yum provides the plug-in for this purpose. The security plug-in extends the yum command with a set of highly-useful security-centric commands, subcommands and options. Refer to Sección 4.4.3, “Plug-in Descriptions” for specific information.

4.1.3. Conservando cambios en los Archivos de Configuracion

You will inevitably make changes to the configuration files installed by packages as you use your Fedora system. RPM, which Yum uses to perform changes to the system, provides a mechanism for ensuring their integrity. Refer to Sección B.2.2, “Installing and Upgrading” for details on how to manage changes to configuration files across package upgrades.

4.2. Paquetes y grupos de paquetes

4.2.1. Buscando paquetes

You can search all RPM package names, descriptions and summaries by using the following command:
yum search term
This command displays the list of matches for each term. For example, to list all packages that match meld or kompare, type:
~]# yum search meld kompare
Loaded plugins: langpacks, presto, refresh-packagekit
============================== N/S Matched: meld ===============================
meld.noarch : Visual diff and merge tool
python-meld3.x86_64 : HTML/XML templating system for Python

============================= N/S Matched: kompare =============================
komparator.x86_64 : Kompare and merge two folders

  Name and summary matches only, use "search all" for everything.
The yum search command is useful for searching for packages you do not know the name of, but for which you know a related term.

4.2.2. Listando paquetes

yum list and related commands provide information about packages, package groups, and repositories.
All of Yum's list commands allow you to filter the results by appending one or more glob expressions as arguments. Glob expressions are normal strings of characters which contain one or more of the wildcard characters * (which expands to match any character multiple times) and ? (which expands to match any one character).

Filtering results with glob expressions

Be careful to escape the glob expressions when passing them as arguments to a yum command, otherwise the Bash shell will interpret these expressions as pathname expansions, and potentially pass all files in the current directory that match the globs to yum. To make sure the glob expressions are passed to yum as intended, either:
  • escape the wildcard characters by preceding them with a backslash character
  • double-quote or single-quote the entire glob expression.
yum list glob_expression
Lists information on installed and available packages matching all glob expressions.
Ejemplo 4.1. Listing all ABRT addons and plug-ins using glob expressions
Packages with various ABRT addons and plug-ins either begin with abrt-addon-, or abrt-plugin-. To list these packages, type the following at a shell prompt:
~]# yum list abrt-addon\* abrt-plugin\*
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
abrt-addon-ccpp.x86_64               2.0.2-5.fc15     @fedora
abrt-addon-kerneloops.x86_64         2.0.2-5.fc15     @fedora
abrt-addon-python.x86_64             2.0.2-5.fc15     @fedora
abrt-plugin-bugzilla.x86_64          2.0.2-5.fc15     @fedora
abrt-plugin-logger.x86_64            2.0.2-5.fc15     @fedora
Available Packages
abrt-plugin-mailx.x86_64             2.0.2-5.fc15     updates
abrt-plugin-reportuploader.x86_64    2.0.2-5.fc15     updates
abrt-plugin-rhtsupport.x86_64        2.0.2-5.fc15     updates

yum list all
Lists all installed and available packages.
Ejemplo 4.2. Listing all installed and available packages
~]# yum list all
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
ConsoleKit.x86_64                       0.4.4-1.fc15                  @fedora
ConsoleKit-libs.x86_64                  0.4.4-1.fc15                  @fedora
ConsoleKit-x11.x86_64                   0.4.4-1.fc15                  @fedora
GConf2.x86_64                           2.32.3-1.fc15                 @fedora
GConf2-gtk.x86_64                       2.32.3-1.fc15                 @fedora
ModemManager.x86_64                     0.4-7.git20110201.fc15        @fedora
NetworkManager.x86_64                   1:0.8.998-4.git20110427.fc15  @fedora
NetworkManager-glib.x86_64              1:0.8.998-4.git20110427.fc15  @fedora
NetworkManager-gnome.x86_64             1:0.8.998-4.git20110427.fc15  @fedora
NetworkManager-openconnect.x86_64       0.8.1-9.git20110419.fc15      @fedora
[output truncated]

yum list installed
Lists all packages installed on your system. The rightmost column in the output lists the repository from which the package was retrieved.
Ejemplo 4.3. Listing installed packages using a double-quoted glob expression
To list all installed packages that begin with krb followed by exactly one character and a hyphen, type:
~]# yum list installed "krb?-*"
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
krb5-libs.x86_64              1.9-7.fc15              @fedora

yum list available
Lists all available packages in all enabled repositories.
Ejemplo 4.4. Listing available packages using a single glob expression with escaped wildcard characters
To list all available packages with names that contain gstreamer and then plugin, run the following command:
~]# yum list available gstreamer\*plugin\*
Loaded plugins: langpacks, presto, refresh-packagekit
Available Packages
gstreamer-plugin-crystalhd.x86_64               3.5.1-1.fc14       fedora
gstreamer-plugins-bad-free.x86_64               0.10.22-1.fc15     updates
gstreamer-plugins-bad-free-devel.x86_64         0.10.22-1.fc15     updates
gstreamer-plugins-bad-free-devel-docs.x86_64    0.10.22-1.fc15     updates
gstreamer-plugins-bad-free-extras.x86_64        0.10.22-1.fc15     updates
gstreamer-plugins-base.x86_64                   0.10.33-1.fc15     updates
gstreamer-plugins-base-devel.x86_64             0.10.33-1.fc15     updates
gstreamer-plugins-base-devel-docs.noarch        0.10.33-1.fc15     updates
gstreamer-plugins-base-tools.x86_64             0.10.33-1.fc15     updates
gstreamer-plugins-espeak.x86_64                 0.3.3-3.fc15       fedora
gstreamer-plugins-fc.x86_64                     0.2-2.fc15         fedora
gstreamer-plugins-good.x86_64                   0.10.29-1.fc15     updates
gstreamer-plugins-good-devel-docs.noarch        0.10.29-1.fc15     updates

yum grouplist
Lista todos los grupos de paquetes
Ejemplo 4.5. Listando todos los grupos de paquetes
~]# yum grouplist
Loaded plugins: langpacks, presto, refresh-packagekit
Setting up Group Process
Installed Groups:
   Administration Tools
   Design Suite
   Dial-up Networking Support
   Fonts
   GNOME Desktop Environment
[output truncated]

yum repolist
Lists the repository ID, name, and number of packages it provides for each enabled repository.
Ejemplo 4.6. Listando repositorios habilitados
~]# yum repolist
Loaded plugins: langpacks, presto, refresh-packagekit
repo id                      repo name                                    status
fedora                       Fedora 15 - i386                             19,365
updates                      Fedora 15 - i386 - Updates                   3,848
repolist: 23,213

4.2.3. Mostrando información del paquete

To display information about one or more packages (glob expressions are valid here as well), use the following command:
yum info package_name
For example, to display information about the abrt package, type:
~]# yum info abrt
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
Name        : abrt
Arch        : x86_64
Version     : 2.0.1
Release     : 2.fc15
Size        : 806 k
Repo        : installed
From repo   : fedora
Summary     : Automatic bug detection and reporting tool
URL         : https://fedorahosted.org/abrt/
License     : GPLv2+
Description : abrt is a tool to help users to detect defects in applications and
            : to create a bug report with all informations needed by maintainer
            : to fix it. It uses plugin system to extend its functionality.
The yum info package_name command is similar to the rpm -q --info package_name command, but provides as additional information the ID of the Yum repository the RPM package is found in (look for the From repo: line in the output).
You can also query the Yum database for alternative and useful information about a package by using the following command:
yumdb info package_name
This command provides additional information about a package, including the checksum of the package (and algorithm used to produce it, such as SHA-256), the command given on the command line that was invoked to install the package (if any), and the reason that the package is installed on the system (where user indicates it was installed by the user, and dep means it was brought in as a dependency). For example, to display additional information about the yum package, type:
~]# yumdb info yum
Loaded plugins: langpacks, presto, refresh-packagekit
yum-3.2.29-4.fc15.noarch
     checksum_data = 249f21fb43c41381c8c9b0cd98d2ea5fa0aa165e81ed2009cfda74c05af67246
     checksum_type = sha256
     from_repo = fedora
     from_repo_revision = 1304429533
     from_repo_timestamp = 1304442346
     installed_by = 0
     reason = user
     releasever = $releasever
For more information on the yumdb command, refer to the yumdb(8) manual page.

4.2.4. Installing Packages

Yum allows you to install both a single package and multiple packages, as well as a package group of your choice.

Instalando paquetes individuales

To install a single package and all of its non-installed dependencies, enter a command in the following form:
yum install package_name
You can also install multiple packages simultaneously by appending their names as arguments:
yum install package_name package_name
If you are installing packages on a multilib system, such as an AMD64 or Intel64 machine, you can specify the architecture of the package (as long as it is available in an enabled repository) by appending .arch to the package name. For example, to install the sqlite2 package for i586, type:
~]# yum install sqlite2.i586
You can use glob expressions to quickly install multiple similarly-named packages:
~]# yum install audacious-plugins-\*
In addition to package names and glob expressions, you can also provide file names to yum install. If you know the name of the binary you want to install, but not its package name, you can give yum install the path name:
~]# yum install /usr/sbin/named
yum then searches through its package lists, finds the package which provides /usr/sbin/named, if any, and prompts you as to whether you want to install it.

Finding which package owns a file

If you know you want to install the package that contains the named binary, but you do not know in which bin or sbin directory is the file installed, use the yum provides command with a glob expression:
~]# yum provides "*bin/named"
Loaded plugins: langpacks, presto, refresh-packagekit
32:bind-9.8.0-3.P1.fc15.i686 : The Berkeley Internet Name Domain (BIND) DNS
                             : (Domain Name System) server
Repo        : fedora
Matched from:
Filename    : /usr/sbin/named
yum provides "*/file_name" is a common and useful trick to find the packages that contain file_name.

Instalando un grupo de paquetes

A package group is similar to a package: it is not useful by itself, but installing one pulls a group of dependent packages that serve a common purpose. A package group has a name and a groupid. The yum grouplist -v command lists the names of all package groups, and, next to each of them, their groupid in parentheses. The groupid is always the term in the last pair of parentheses, such as kde-desktop in the following example:
~]# yum -v grouplist kde\*
Not loading "blacklist" plugin, as it is disabled
Loading "langpacks" plugin
Loading "presto" plugin
Loading "refresh-packagekit" plugin
Not loading "whiteout" plugin, as it is disabled
Adding en_US to language list
Config time: 0.900
Yum Version: 3.2.29
Setting up Group Process
rpmdb time: 0.002
group time: 0.995
Available Groups:
   KDE Software Compilation (kde-desktop)
   KDE Software Development (kde-software-development)
Done
You can install a package group by passing its full group name (without the groupid part) to groupinstall:
yum groupinstall group_name
You can also install by groupid:
yum groupinstall groupid
You can even pass the groupid (or quoted name) to the install command if you prepend it with an @-symbol (which tells yum that you want to perform a groupinstall):
yum install @group
For example, the following are alternative but equivalent ways of installing the KDE Desktop group:
~]# yum groupinstall "KDE Desktop"
~]# yum groupinstall kde-desktop
~]# yum install @kde-desktop

4.2.5. Removing Packages

Similarly to package installation, Yum allows you to uninstall (remove in RPM and Yum terminology) both individual packages and a package group.

Eliminando paquetes individuales

To uninstall a particular package, as well as any packages that depend on it, run the following command as root:
yum remove package_name
As when you install multiple packages, you can remove several at once by adding more package names to the command. For example, to remove totem, rhythmbox, and sound-juicer, type the following at a shell prompt:
~]# yum remove totem rhythmbox sound-juicer
Similar to install, remove can take these arguments:
  • nombres de paquete
  • glob expressions
  • listas de archivos
  • package provides

Eliminando un paquete cuando otros paquetes dependen de él

Yum is not able to remove a package without also removing packages which depend on it. This type of operation can only be performed by RPM, is not advised, and can potentially leave your system in a non-functioning state or cause applications to misbehave and/or crash. For further information, refer to Sección B.2.4, “Desinstalación” in the RPM chapter.

Eliminando un grupo de paquetes

You can remove a package group using syntax congruent with the install syntax:
yum groupremove group
yum remove @group
The following are alternative but equivalent ways of removing the KDE Desktop group:
~]# yum groupremove "KDE Desktop"
~]# yum groupremove kde-desktop
~]# yum remove @kde-desktop

Intelligent package group removal

When you tell yum to remove a package group, it will remove every package in that group, even if those packages are members of other package groups or dependencies of other installed packages. However, you can instruct yum to remove only those packages which are not required by any other packages or groups by adding the groupremove_leaf_only=1 directive to the [main] section of the /etc/yum.conf configuration file. For more information on this directive, refer to Sección 4.3.1, “Setting [main] Options”.

4.2.6. Working with Transaction History

The yum history command allows users to review information about a timeline of Yum transactions, the dates and times on when they occurred, the number of packages affected, whether transactions succeeded or were aborted, and if the RPM database was changed between transactions. Additionally, this command can be used to undo or redo certain transactions.

Listando transacciones

To display a list of twenty most recent transactions, as root, either run yum history with no additional arguments, or type the following at a shell prompt:
yum history list
To display all transactions, add the all keyword:
yum history list all
To display only transactions in a given range, use the command in the following form:
yum history list start_id..end_id
You can also list only transactions regarding a particular package or packages. To do so, use the command with a package name or a glob expression:
yum history list glob_expression
For example, the list of first five transactions may look as follows:
~]# yum history list 1..5
Loaded plugins: langpacks, presto, refresh-packagekit
ID     | Login user               | Date and time    | Action(s)      | Altered
-------------------------------------------------------------------------------
     5 | Jaromir ... <jhradilek>  | 2011-07-29 15:33 | Install        |    1
     4 | Jaromir ... <jhradilek>  | 2011-07-21 15:10 | Install        |    1
     3 | Jaromir ... <jhradilek>  | 2011-07-16 15:27 | I, U           |   73
     2 | System <unset>           | 2011-07-16 15:19 | Update         |    1
     1 | System <unset>           | 2011-07-16 14:38 | Install        | 1106
history list
All forms of the yum history list command produce tabular output with each row consisting of the following columns:
  • ID — an integer value that identifies a particular transaction.
  • Login user — the name of the user whose login session was used to initiate a transaction. This information is typically presented in the Full Name <username> form. For transactions that were not issued by a user (such as an automatic system update), System <unset> is used instead.
  • Date and time — the date and time when a transaction was issued.
  • Action(s) — a list of actions that were performed during a transaction as described in Tabla 4.1, “Possible values of the Action(s) field”.
  • Altered — the number of packages that were affected by a transaction, possibly followed by additional information as described in Tabla 4.2, “Possible values of the Altered field”.
Tabla 4.1. Possible values of the Action(s) field
Action Abbreviation Description
Downgrade D At least one package has been downgraded to an older version.
Erase E At least one package has been removed.
Install I At least one new package has been installed.
Obsoleting O At least one package has been marked as obsolete.
Reinstall R At least one package has been reinstalled.
Update U At least one package has been updated to a newer version.

Tabla 4.2. Possible values of the Altered field
Symbol Description
< Before the transaction finished, the rpmdb database was changed outside Yum.
> After the transaction finished, the rpmdb database was changed outside Yum.
* The transaction failed to finish.
# The transaction finished successfully, but yum returned a non-zero exit code.
E The transaction finished successfully, but an error or a warning was displayed.
P The transaction finished successfully, but problems already existed in the rpmdb database.
s The transaction finished successfully, but the --skip-broken command line option was used and certain packages were skipped.

Yum also allows you to display a summary of all past transactions. To do so, run the command in the following form as root:
yum history summary
To display only transactions in a given range, type:
yum history summary start_id..end_id
Similarly to the yum history list command, you can also display a summary of transactions regarding a certain package or packages by supplying a package name or a glob expression:
yum history summary glob_expression
For instance, a summary of the transaction history displayed above would look like the following:
~]# yum history summary 1..5
Loaded plugins: langpacks, presto, refresh-packagekit
Login user                 | Time                | Action(s)        | Altered 
-------------------------------------------------------------------------------
Jaromir ... <jhradilek>    | Last day            | Install          |        1
Jaromir ... <jhradilek>    | Last week           | Install          |        1
Jaromir ... <jhradilek>    | Last 2 weeks        | I, U             |       73
System <unset>             | Last 2 weeks        | I, U             |     1107
history summary
All forms of the yum history summary command produce simplified tabular output similar to the output of yum history list.
As shown above, both yum history list and yum history summary are oriented towards transactions, and although they allow you to display only transactions related to a given package or packages, they lack important details, such as package versions. To list transactions from the perspective of a package, run the following command as root:
yum history package-list glob_expression
For example, to trace the history of subscription-manager and related packages, type the following at a shell prompt:
~]# yum history package-list subscription-manager\*
Loaded plugins: langpacks, presto, refresh-packagekit
ID     | Action(s)      | Package
-------------------------------------------------------------------------------
     3 | Updated        | subscription-manager-0.95.11-1.el6.x86_64
     3 | Update         |                      0.95.17-1.el6_1.x86_64
     3 | Updated        | subscription-manager-firstboot-0.95.11-1.el6.x86_64
     3 | Update         |                                0.95.17-1.el6_1.x86_64
     3 | Updated        | subscription-manager-gnome-0.95.11-1.el6.x86_64
     3 | Update         |                            0.95.17-1.el6_1.x86_64
     1 | Install        | subscription-manager-0.95.11-1.el6.x86_64
     1 | Install        | subscription-manager-firstboot-0.95.11-1.el6.x86_64
     1 | Install        | subscription-manager-gnome-0.95.11-1.el6.x86_64
history package-list
In this example, three packages were installed during the initial system installation: subscription-manager, subscription-manager-firstboot, and subscription-manager-gnome. In the third transaction, all these packages were updated from version 0.95.11 to version 0.95.17.

Examining Transactions

To display the summary of a single transaction, as root, use the yum history summary command in the following form:
yum history summary id
To examine a particular transaction or transactions in more detail, run the following command as root:
yum history info id
The id argument is optional and when you omit it, yum automatically uses the last transaction. Note that when specifying more than one transaction, you can also use a range:
yum history info start_id..end_id
The following is sample output for two transactions, each installing one new package:
~]# yum history info 4..5
Loaded plugins: langpacks, presto, refresh-packagekit
Transaction ID : 4..5
Begin time     : Thu Jul 21 15:10:46 2011
Begin rpmdb    : 1107:0c67c32219c199f92ed8da7572b4c6df64eacd3a
End time       :            15:33:15 2011 (22 minutes)
End rpmdb      : 1109:1171025bd9b6b5f8db30d063598f590f1c1f3242
User           : Jaromir Hradilek <jhradilek>
Return-Code    : Success
Command Line   : install screen
Command Line   : install yum-plugin-fs-snapshot
Transaction performed with:
    Installed     rpm-4.8.0-16.el6.x86_64
    Installed     yum-3.2.29-17.el6.noarch
    Installed     yum-metadata-parser-1.1.2-16.el6.x86_64
Packages Altered:
    Install screen-4.0.3-16.el6.x86_64
    Install yum-plugin-fs-snapshot-1.1.30-6.el6.noarch
history info
You can also view additional information, such as what configuration options were used at the time of the transaction, or from what repository and why were certain packages installed. To determine what additional information is available for a certain transaction, type the following at a shell prompt as root:
yum history addon-info id
Similarly to yum history info, when no id is provided, yum automatically uses the latest transaction. Another way to refer to the latest transaction is to use the last keyword:
yum history addon-info last
For instance, for the first transaction in the previous example, the yum history addon-info command would provide the following output:
~]# yum history addon-info 4
Loaded plugins: langpacks, presto, refresh-packagekit
Transaction ID: 4
Available additional history information:
  config-main
  config-repos
  saved_tx

history addon-info
In this example, three types of information are available:
  • config-main — global Yum options that were in use during the transaction. Refer to Sección 4.3.1, “Setting [main] Options” for information on how to change global options.
  • config-repos — options for individual Yum repositories. Refer to Sección 4.3.2, “Setting [repository] Options” for information on how to change options for individual repositories.
  • saved_tx — the data that can be used by the yum load-transaction command in order to repeat the transaction on another machine (see below).
To display selected type of additional information, run the following command as root:
yum history addon-info id information

Reverting and Repeating Transactions

Apart from reviewing the transaction history, the yum history command provides means to revert or repeat a selected transaction. To revert a transaction, type the following at a shell prompt as root:
yum history undo id
To repeat a particular transaction, as root, run the following command:
yum history redo id
Both commands also accept the last keyword to undo or repeat the latest transaction.
Note that both yum history undo and yum history redo commands merely revert or repeat the steps that were performed during a transaction: if the transaction installed a new package, the yum history undo command will uninstall it, and vice versa. If possible, this command will also attempt to downgrade all updated packages to their previous version, but these older packages may no longer be available. If you need to be able to restore the system to the state before an update, consider using the fs-snapshot plug-in described in Sección 4.4.3, “Plug-in Descriptions”.
When managing several identical systems, Yum also allows you to perform a transaction on one of them, store the transaction details in a file, and after a period of testing, repeat the same transaction on the remaining systems as well. To store the transaction details to a file, type the following at a shell prompt as root:
yum -q history addon-info id saved_tx > file_name
Once you copy this file to the target system, you can repeat the transaction by using the following command as root:
yum load-transaction file_name
Note, however that the rpmdb version stored in the file must by identical to the version on the target system. You can verify the rpmdb version by using the yum version nogroups command.

Starting New Transaction History

Yum stores the transaction history in a single SQLite database file. To start new transaction history, run the following command as root:
yum history new
This will create a new, empty database file in the /var/lib/yum/history/ directory. The old transaction history will be kept, but will not be accessible as long as a newer database file is present in the directory.

4.3. Configurando Yum y repositorios de Yum

The configuration file for yum and related utilities is located at /etc/yum.conf. This file contains one mandatory [main] section, which allows you to set Yum options that have global effect, and may also contain one or more [repository] sections, which allow you to set repository-specific options. However, best practice is to define individual repositories in new or existing .repo files in the /etc/yum.repos.d/directory. The values you define in the [main] section of the /etc/yum.conf file may override values set in individual [repository] sections.
Esta sección le muestra cómo:
  • set global Yum options by editing the [main] section of the /etc/yum.conf configuration file;
  • set options for individual repositories by editing the [repository] sections in /etc/yum.conf and .repo files in the /etc/yum.repos.d/ directory;
  • use Yum variables in /etc/yum.conf and files in the /etc/yum.repos.d/ directory so that dynamic version and architecture values are handled correctly;
  • add, enable, and disable Yum repositories on the command line; and,
  • set up your own custom Yum repository.

4.3.1. Setting [main] Options

The /etc/yum.conf configuration file contains exactly one [main] section, and while some of the key-value pairs in this section affect how yum operates, others affect how Yum treats repositories. You can add many additional options under the [main] section heading in /etc/yum.conf.
A sample /etc/yum.conf configuration file can look like this:
[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3

[comments abridged]

# PUT YOUR REPOS HERE OR IN separate files named file.repo
# in /etc/yum.repos.d
The following are the most commonly-used options in the [main] section:
assumeyes=value
…where value is one of:
0yum should prompt for confirmation of critical actions it performs. This is the default.
1 — Do not prompt for confirmation of critical yum actions. If assumeyes=1 is set, yum behaves in the same way that the command line option -y does.
cachedir=directory
…where directory is an absolute path to the directory where Yum should store its cache and database files. By default, Yum's cache directory is /var/cache/yum/$basearch/$releasever.
Refer to Sección 4.3.3, “Using Yum Variables” for descriptions of the $basearch and $releasever Yum variables.
debuglevel=value
…where value is an integer between 1 and 10. Setting a higher debuglevel value causes yum to display more detailed debugging output. debuglevel=0 disables debugging output, while debuglevel=2 is the default.
exactarch=value
…where value is one of:
0 — Do not take into account the exact architecture when updating packages.
1 — Consider the exact architecture when updating packages. With this setting, yum will not install an i686 package to update an i386 package already installed on the system. This is the default.
exclude=package_name [more_package_names]
This option allows you to exclude packages by keyword during installation/updates. Listing multiple packages for exclusion can be accomplished by quoting a space-delimited list of packages. Shell globs using wildcards (for example, * and ?) are allowed.
gpgcheck=value
…where value is one of:
0 — Disable GPG signature-checking on packages in all repositories, including local package installation.
1 — Enable GPG signature-checking on all packages in all repositories, including local package installation. gpgcheck=1 is the default, and thus all packages' signatures are checked.
If this option is set in the [main] section of the /etc/yum.conf file, it sets the GPG-checking rule for all repositories. However, you can also set gpgcheck=value for individual repositories instead; that is, you can enable GPG-checking on one repository while disabling it on another. Setting gpgcheck=value for an individual repository in its corresponding .repo file overrides the default if it is present in /etc/yum.conf.
For more information on GPG signature-checking, refer to Sección B.3, “Revisando la firma de los paquetes”.
groupremove_leaf_only=value
…where value is one of:
0yum should not check the dependencies of each package when removing a package group. With this setting, yum removes all packages in a package group, regardless of whether those packages are required by other packages or groups. groupremove_leaf_only=0 is the default.
1yum should check the dependencies of each package when removing a package group, and remove only those packages which are not not required by any other package or group.
For more information on removing packages, refer to Intelligent package group removal.
installonlypkgs=space separated list of packages
Here you can provide a space-separated list of packages which yum can install, but will never update. Refer to the yum.conf(5) manual page for the list of packages which are install-only by default.
If you add the installonlypkgs directive to /etc/yum.conf, you should ensure that you list all of the packages that should be install-only, including any of those listed under the installonlypkgs section of yum.conf(5). In particular, kernel packages should always be listed in installonlypkgs (as they are by default), and installonly_limit should always be set to a value greater than 2 so that a backup kernel is always available in case the default one fails to boot.
installonly_limit=value
…where value is an integer representing the maximum number of versions that can be installed simultaneously for any single package listed in the installonlypkgs directive.
The defaults for the installonlypkgs directive include several different kernel packages, so be aware that changing the value of installonly_limit will also affect the maximum number of installed versions of any single kernel package. The default value listed in /etc/yum.conf is installonly_limit=3, and it is not recommended to decrease this value, particularly below 2.
keepcache=value
…where value is one of:
0 — Do not retain the cache of headers and packages after a successful installation. This is the default.
1 — Retain the cache after a successful installation.
logfile=file_name
…where file_name is an absolute path to the file in which yum should write its logging output. By default, yum logs to /var/log/yum.log.
multilib_policy=value
…where value is one of:
best — install the best-choice architecture for this system. For example, setting multilib_policy=best on an AMD64 system causes yum to install 64-bit versions of all packages.
all — always install every possible architecture for every package. For example, with multilib_policy set to all on an AMD64 system, yum would install both the i586 and AMD64 versions of a package, if both were available.
obsoletes=value
…where value is one of:
0 — Disable yum's obsoletes processing logic when performing updates.
1 — Enable yum's obsoletes processing logic when performing updates. When one package declares in its spec file that it obsoletes another package, the latter package will be replaced by the former package when the former package is installed. Obsoletes are declared, for example, when a package is renamed. obsoletes=1 the default.
plugins=value
…where value is one of:
0 — Disable all Yum plug-ins globally.

Disabling all plug-ins is not advised

Disabling all plug-ins is not advised because certain plug-ins provide important Yum services. Disabling plug-ins globally is provided as a convenience option, and is generally only recommended when diagnosing a potential problem with Yum.
1 — Enable all Yum plug-ins globally. With plugins=1, you can still disable a specific Yum plug-in by setting enabled=0 in that plug-in's configuration file.
For more information about various Yum plug-ins, refer to Sección 4.4, “Yum Plug-ins”. For further information on controlling plug-ins, see Sección 4.4.1, “Enabling, Configuring, and Disabling Yum Plug-ins”.
reposdir=directory
…where directory is an absolute path to the directory where .repo files are located. All .repo files contain repository information (similar to the [repository] sections of /etc/yum.conf). yum collects all repository information from .repo files and the [repository] section of the /etc/yum.conf file to create a master list of repositories to use for transactions. If reposdir is not set, yum uses the default directory /etc/yum.repos.d/.
retries=value
…where value is an integer 0 or greater. This value sets the number of times yum should attempt to retrieve a file before returning an error. Setting this to 0 makes yum retry forever. The default value is 10.
For a complete list of available [main] options, refer to the [main] OPTIONS section of the yum.conf(5) manual page.

4.3.2. Setting [repository] Options

The [repository] sections, where repository is a unique repository ID such as my_personal_repo (spaces are not permitted), allow you to define individual Yum repositories.
The following is a bare-minimum example of the form a [repository] section takes:
[repository]
name=repository_name
baseurl=repository_url
Every [repository] section must contain the following directives:
name=repository_name
…where repository_name is a human-readable string describing the repository.
baseurl=repository_url
…where repository_url is a URL to the directory where the repodata directory of a repository is located:
  • If the repository is available over HTTP, use: http://path/to/repo
  • Si el repositorio está disponible sobre FTP use: ftp://ruta/al/repo
  • If the repository is local to the machine, use: file:///path/to/local/repo
  • If a specific online repository requires basic HTTP authentication, you can specify your username and password by prepending it to the URL as username:password@link. For example, if a repository on http://www.example.com/repo/ requires a username of user and a password of password, then the baseurl link could be specified as http://user:password@www.example.com/repo/.
Usually this URL is an HTTP link, such as:
baseurl=http://path/to/repo/releases/$releasever/server/$basearch/os/
Note that Yum always expands the $releasever, $arch, and $basearch variables in URLs. For more information about Yum variables, refer to Sección 4.3.3, “Using Yum Variables”.
Another useful [repository] directive is the following:
enabled=value
…where value is one of:
0 — Do not include this repository as a package source when performing updates and installs. This is an easy way of quickly turning repositories on and off, which is useful when you desire a single package from a repository that you do not want to enable for updates or installs.
1 — Include this repository as a package source.
Turning repositories on and off can also be performed by passing either the --enablerepo=repo_name or --disablerepo=repo_name option to yum, or through the Add/Remove Software window of the PackageKit utility.
Many more [repository] options exist. For a complete list, refer to the [repository] OPTIONS section of the yum.conf(5) manual page.

4.3.3. Using Yum Variables

You can use and reference the following built-in variables in yum commands and in all Yum configuration files (that is, /etc/yum.conf and all .repo files in the /etc/yum.repos.d/ directory):
$releasever
You can use this variable to reference the release version of Fedora. Yum obtains the value of $releasever from the distroverpkg=value line in the /etc/yum.conf configuration file. If there is no such line in /etc/yum.conf, then yum infers the correct value by deriving the version number from the redhat-release package.
$arch
You can use this variable to refer to the system's CPU architecture as returned when calling Python's os.uname() function. Valid values for $arch include: i586, i686 and x86_64.
$basearch
You can use $basearch to reference the base architecture of the system. For example, i686 and i586 machines both have a base architecture of i386, and AMD64 and Intel64 machines have a base architecture of x86_64.
$YUM0-9
These ten variables are each replaced with the value of any shell environment variables with the same name. If one of these variables is referenced (in /etc/yum.conf for example) and a shell environment variable with the same name does not exist, then the configuration file variable is not replaced.
To define a custom variable or to override the value of an existing one, create a file with the same name as the variable (without the $ sign) in the /etc/yum/vars/ directory, and add the desired value on its first line.
For example, repository descriptions often include the operating system name. To define a new variable called $osname, create a new file with Fedora on the first line and save it as /etc/yum/vars/osname:
~]# echo "Fedora" > /etc/yum/vars/osname
Instead of Fedora 17, you can now use the following in the .repo files:
name=$osname $releasever

4.3.4. Viewing the Current Configuration

To display the current values of global Yum options (that is, the options specified in the [main] section of the /etc/yum.conf file), run the yum-config-manager with no command line options:
yum-config-manager
To list the content of a different configuration section or sections, use the command in the following form:
yum-config-manager section
You can also use a glob expression to display the configuration of all matching sections:
yum-config-manager glob_expression
For example, to list all configuration options and their corresponding values, type the following at a shell prompt:
~]$ yum-config-manager main \*
Loaded plugins: langpacks, presto, refresh-packagekit
================================== main ===================================
[main]
alwaysprompt = True
assumeyes = False
bandwith = 0
bugtracker_url = https://bugzilla.redhat.com/enter_bug.cgi?product=Red%20Hat%20Enterprise%20Linux%206&component=yum
cache = 0
[output truncated]

4.3.5. Adding, Enabling, and Disabling a Yum Repository

Sección 4.3.2, “Setting [repository] Options” described various options you can use to define a Yum repository. This section explains how to add, enable, and disable a repository by using the yum-config-manager command.

Adding a Yum Repository

To define a new repository, you can either add a [repository] section to the /etc/yum.conf file, or to a .repo file in the /etc/yum.repos.d/ directory. All files with the .repo file extension in this directory are read by yum, and best practice is to define your repositories here instead of in /etc/yum.conf.

Be careful when using untrusted software sources

Obtaining and installing software packages from unverified or untrusted software sources constitutes a potential security risk, and could lead to security, stability, compatibility maintainability issues.
Yum repositories commonly provide their own .repo file. To add such a repository to your system and enable it, run the following command as root:
yum-config-manager --add-repo repository_url
…where repository_url is a link to the .repo file. For example, to add a repository located at http://www.example.com/example.repo, type the following at a shell prompt:
~]# yum-config-manager --add-repo http://www.example.com/example.repo
Loaded plugins: langpacks, presto, refresh-packagekit
adding repo from: http://www.example.com/example.repo
grabbing file http://www.example.com/example.repo to /etc/yum.repos.d/example.repo
example.repo                                             |  413 B     00:00
repo saved to /etc/yum.repos.d/example.repo

Enabling a Yum Repository

To enable a particular repository or repositories, type the following at a shell prompt as root:
yum-config-manager --enable repository
…where repository is the unique repository ID (use yum repolist all to list available repository IDs). Alternatively, you can use a glob expression to enable all matching repositories:
yum-config-manager --enable glob_expression
For example, to disable repositories defined in the [example], [example-debuginfo], and [example-source]sections, type:
~]# yum-config-manager --enable example\*
Loaded plugins: langpacks, presto, refresh-packagekit
============================== repo: example ==============================
[example]
bandwidth = 0
base_persistdir = /var/lib/yum/repos/x86_64/6Server
baseurl = http://www.example.com/repo/6Server/x86_64/
cache = 0
cachedir = /var/cache/yum/x86_64/6Server/example
[output truncated]
When successful, the yum-config-manager --enable command displays the current repository configuration.

Disabling a Yum Repository

To disable a Yum repository, run the following command as root:
yum-config-manager --disable repository
…where repository is the unique repository ID (use yum repolist all to list available repository IDs). Similarly to yum-config-manager --enable, you can use a glob expression to disable all matching repositories at the same time:
yum-config-manager --disable glob_expression
When successful, the yum-config-manager --disable command displays the current configuration.

4.3.6. Creating a Yum Repository

To set up a Yum repository, follow these steps:
  1. Instalar el paquete createrepo:
    ~]# yum install createrepo
  2. Copy all of the packages into one directory, such as /mnt/local_repo/.
  3. Run the createrepo --database command on that directory:
    ~]# createrepo --database /mnt/local_repo
This creates the necessary metadata for your Yum repository, as well as the sqlite database for speeding up yum operations.

4.4. Yum Plug-ins

Yum provides plug-ins that extend and enhance its operations. Certain plug-ins are installed by default. Yum always informs you which plug-ins, if any, are loaded and active whenever you call any yum command. For example:
~]# yum info yum
Loaded plugins: langpacks, presto, refresh-packagekit
[output truncated]
Note that the plug-in names which follow Loaded plugins are the names you can provide to the --disableplugins=plugin_name option.

4.4.1. Enabling, Configuring, and Disabling Yum Plug-ins

To enable Yum plug-ins, ensure that a line beginning with plugins= is present in the [main] section of /etc/yum.conf, and that its value is set to 1:
plugins=1
You can disable all plug-ins by changing this line to plugins=0.

Disabling all plug-ins is not advised

Disabling all plug-ins is not advised because certain plug-ins provide important Yum services. Disabling plug-ins globally is provided as a convenience option, and is generally only recommended when diagnosing a potential problem with Yum.
Every installed plug-in has its own configuration file in the /etc/yum/pluginconf.d/ directory. You can set plug-in specific options in these files. For example, here is the refresh-packagekit plug-in's refresh-packagekit.conf configuration file:
[main]
enabled=1
Plug-in configuration files always contain a [main] section (similar to Yum's /etc/yum.conf file) in which there is (or you can place if it is missing) an enabled= option that controls whether the plug-in is enabled when you run yum commands.
If you disable all plug-ins by setting enabled=0 in /etc/yum.conf, then all plug-ins are disabled regardless of whether they are enabled in their individual configuration files.
If you merely want to disable all Yum plug-ins for a single yum command, use the --noplugins option.
If you want to disable one or more Yum plug-ins for a single yum command, add the --disableplugin=plugin_name option to the command. For example, to disable the presto plug-in while updating a system, type:
~]# yum update --disableplugin=presto
The plug-in names you provide to the --disableplugin= option are the same names listed after the Loaded plugins line in the output of any yum command. You can disable multiple plug-ins by separating their names with commas. In addition, you can match multiple plug-in names or shorten long ones by using glob expressions:
~]# yum update --disableplugin=presto,refresh-pack*

4.4.2. Installing Additional Yum Plug-ins

Yum plug-ins usually adhere to the yum-plugin-plugin_name package-naming convention, but not always: the package which provides the presto plug-in is named yum-presto, for example. You can install a Yum plug-in in the same way you install other packages. For instance, to install the security plug-in, type the following at a shell prompt:
~]# yum install yum-plugin-security

4.4.3. Plug-in Descriptions

The following list provides descriptions of a few useful Yum plug-ins:
fs-snapshot (yum-plugin-fs-snapshot)
The fs-snapshot plug-in extends Yum to create a snapshot of a file system before proceeding with a transaction such as a system update or package removal. When a user decides that the changes made by the transaction are unwanted, this mechanism allows the user to roll back to the changes that are stored in a snapshot.
In order for the plug-in to work, the root file system (that is, /) must be on an LVM (Logical Volume Manager) or Btrfs volume. To use the fs-snapshot plug-in on an LVM volume, take the following steps:
  1. Make sure that the volume group with the root file system has enough free extents. The required size is a function of the amount of changes to the original logical volume that is expected during the life of the snapshot. The reasonable default is 50–80 % of the original logical volume size.
    To display detailed information about a particular volume group, run the vgdisplay command in the following form as root:
    vgdisplay volume_group
    The number of free extents is listed on the Free PE / Size line.
  2. If the volume group with the root file system does not have enough free extents, add a new physical volume:
    1. As root, run the pvcreate command in the following form to initialize a physical volume for use with the Logical Volume Manager:
      pvcreate device
    2. Use the vgextend command in the following form as root to add the physical volume to the volume group:
      vgextend volume_group physical_volume
  3. Edit the configuration file located in /etc/yum/pluginconf.d/fs-snapshot.conf, and make the following changes to the [lvm] section:
    1. Change the value of the enabled option to 1:
      enabled = 1
    2. Remove the hash sign (that is, #) from the beginning of the lvcreate_size_args line, and adjust the number of logical extents to be allocated for a snapshot. For example, to allocate 80 % of the size of the original logical volume, use:
      lvcreate_size_args = -l 80%ORIGIN
    Refer to Tabla 4.3, “Supported fs-snapshot.conf directives” for a complete list of available configuration options.
  4. Run the desired yum command, and make sure fs-snapshot is included in the list of loaded plug-ins (the Loaded plugins line) before you confirm the changes and proceed with the transaction. The fs-snapshot plug-in displays a line in the following form for each affected logical volume:
    fs-snapshot: snapshotting file_system (/dev/volume_group/logical_volume): logical_volume_yum_timestamp
  5. Verify that the system is working as expected:
    • If you decide to keep the changes, remove the snapshot by running the lvremove command as root:
      lvremove /dev/volume_group/logical_volume_yum_timestamp
    • If you decide to revert the changes and restore the file system to a state that is saved in a snapshot, take the following steps:
      1. As root, run the command in the following form to merge a snapshot into its original logical volume:
        lvconvert --merge /dev/volume_group/logical_volume_yum_timestamp
        The lvconvert command will inform you that a restart is required in order for the changes to take effect.
      2. Restart the system as instructed. You can do so by typing the following at a shell prompt as root:
        reboot
To use the fs-snapshot plug-in on a Btrfs file system, take the following steps:
  1. Run the desired yum command, and make sure fs-snapshot is included in the list of loaded plug-ins (the Loaded plugins line) before you confirm the changes and proceed with the transaction. The fs-snapshot plug-in displays a line in the following form for each affected file system:
    fs-snapshot: snapshotting file_system: file_system/yum_timestamp
  2. Verify that the system is working as expected:
    • If you decide to keep the changes, you can optionally remove unwanted snapshots. To remove a Btrfs snapshot, use the command in the following form as root:
      btrfs subvolume delete file_system/yum_timestamp
    • If you decide to revert the changes and restore a file system to a state that is saved in a snapshot, take the following steps:
      1. Determine the identifier of a particular snapshot by using the following command as root:
        btrfs subvolume list file_system
      2. As root, configure the system to mount this snapshot by default:
        btrfs subvolume set-default id file_system
      3. Restart the system. You can do so by typing the following at a shell prompt as root:
        reboot
For more information on logical volume management, Btrfs, and file system snapshots, see the Fedora 17 Storage Administration Guide. For additional information about the plug-in and its configuration, refer to the yum-fs-snapshot(1) and yum-fs-snapshot.conf(5) manual pages.
Tabla 4.3. Supported fs-snapshot.conf directives
Section Directive Description
[main] enabled=value Allows you to enable or disable the plug-in. The value must be either 1 (enabled), or 0 (disabled). When installed, the plug-in is enabled by default.
exclude=list Allows you to exclude certain file systems. The value must be a space-separated list of mount points you do not want to snapshot (for example, /srv /mnt/backup). This option is not included in the configuration file by default.
[lvm] enabled=value Allows you to enable or disable the use of the plug-in on LVM volumes. The value must be either 1 (enabled), or 0 (disabled). This option is disabled by default.
lvcreate_size_args=value Allows you to specify the size of a logical volume snapshot. The value must be the -l or -L command line option for the lvcreate utility followed by a valid argument (for example, -l 80%ORIGIN).

presto (yum-presto)
The presto plug-in adds support to Yum for downloading delta RPM packages, during updates, from repositories which have presto metadata enabled. Delta RPMs contain only the differences between the version of the package installed on the client requesting the RPM package and the updated version in the repository.
Downloading a delta RPM is much quicker than downloading the entire updated package, and can speed up updates considerably. Once the delta RPMs are downloaded, they must be rebuilt to apply the difference to the currently-installed package and thus create the full, updated package. This process takes CPU time on the installing machine. Using delta RPMs is therefore a tradeoff between time-to-download, which depends on the network connection, and time-to-rebuild, which is CPU-bound. Using the presto plug-in is recommended for fast machines and systems with slower network connections, while slower machines on very fast connections may benefit more from downloading normal RPM packages, that is, by disabling presto.
refresh-packagekit (PackageKit-yum-plugin)
The refresh-packagekit plug-in updates metadata for PackageKit whenever yum is run. The refresh-packagekit plug-in is installed by default.
rhnplugin (yum-rhn-plugin)
The rhnplugin provides support for connecting to RHN Classic. This allows systems registered with RHN Classic to update and install packages from this system.
Refer to the rhnplugin(8) manual page for more information about the plug-in.
security (yum-plugin-security)
Discovering information about and applying security updates easily and often is important to all system administrators. For this reason Yum provides the security plug-in, which extends yum with a set of highly-useful security-related commands, subcommands and options.
You can check for security-related updates as follows:
~]# yum check-update --security
Loaded plugins: langpacks, presto, refresh-packagekit, security
Limiting package lists to security relevant ones
updates-testing/updateinfo                               | 329 kB     00:00
9 package(s) needed for security, out of 270 available

ConsoleKit.x86_64                    0.4.5-1.fc15                  updates
ConsoleKit-libs.x86_64               0.4.5-1.fc15                  updates
ConsoleKit-x11.x86_64                0.4.5-1.fc15                  updates
NetworkManager.x86_64                1:0.8.999-2.git20110509.fc15  updates
NetworkManager-glib.x86_64           1:0.8.999-2.git20110509.fc15  updates
[output truncated]
You can then use either yum update --security or yum update-minimal --security to update those packages which are affected by security advisories. Both of these commands update all packages on the system for which a security advisory has been issued. yum update-minimal --security updates them to the latest packages which were released as part of a security advisory, while yum update --security will update all packages affected by a security advisory to the latest version of that package available.
En otras palabras, sí:
  • the kernel-2.6.38.4-20 package is installed on your system;
  • the kernel-2.6.38.6-22 package was released as a security update;
  • then kernel-2.6.38.6-26 was released as a bug fix update,
...then yum update-minimal --security will update you to kernel-2.6.38.6-22, and yum update --security will update you to kernel-2.6.38.6-26. Conservative system administrators may want to use update-minimal to reduce the risk incurred by updating packages as much as possible.
Refer to the yum-security(8) manual page for usage details and further explanation of the enhancements the security plug-in adds to yum.

4.5. Recursos adicionales

http://yum.baseurl.org/wiki/Guides
The Yum Guides section of the Yum wiki contains more documentation.

Capítulo 5. PackageKit

Fedora provides PackageKit for viewing, managing, updating, installing and uninstalling packages compatible with your system. PackageKit consists of several graphical interfaces that can be opened from the GNOME panel menu, or from the Notification Area when PackageKit alerts you that updates are available. For more information on PackageKit's architecture and available front ends, refer to Sección 5.3, “PackageKit Architecture”.

5.1. Updating Packages with Software Update

You can open Software Updates by clicking ApplicationsSystem ToolsSoftware Update from the Activities menu, or running the gpk-update-viewer command at the shell prompt. In the Software Updates window, all available updates are listed along with the names of the packages being updated (minus the .rpm suffix, but including the CPU architecture), a short summary of the package, and, usually, short descriptions of the changes the update provides. Any updates you do not wish to install can be de-selected here by unchecking the checkbox corresponding to the update.
Installing updates with Software Update
installing 56 updates with PackageKit's software update window
Figura 5.1. Installing updates with Software Update

The updates presented in the Software Updates window only represent the currently-installed packages on your system for which updates are available; dependencies of those packages, whether they are existing packages on your system or new ones, are not shown until you click Install Updates.
PackageKit utilizes the fine-grained user authentication capabilities provided by the PolicyKit toolkit whenever you request it to make changes to the system. Whenever you instruct PackageKit to update, install or remove packages, you will be prompted to enter the superuser password before changes are made to the system.
If you instruct PackageKit to update the kernel package, then it will prompt you after installation, asking you whether you want to reboot the system and thereby boot into the newly-installed kernel.

5.1.1. Setting the Update-Checking Interval

Selecting ApplicationsOtherSoftware Updates from the Activities menu opens the Software Update Preferences window. The Update Settings tab allows you to define the interval at which PackageKit checks for package updates, as well as whether or not to automatically install all updates or only security updates. Leaving the Check for updates when using mobile broadband box unchecked is handy for avoiding extraneous bandwidth usage when using a wireless connection on which you are charged for the amount of data you download.
Setting PackageKit's update-checking interval
Setting the update-checking interval for PackageKit
Figura 5.2. Setting PackageKit's update-checking interval

5.1.2. Setting the Software Sources

To select which package repositories to use to install software updates, select ApplicationsOtherSoftware Updates from the Activities menu, and click the Software Sources tab of the Software Update Preferences window.
Setting PackageKit's software sources
Setting the software sources for PackageKit
Figura 5.3. Setting PackageKit's software sources

PackageKit refers to Yum repositories as software sources. It obtains all packages from enabled software sources.The Software Sources tab shows the repository name, as written on the name=My Repository Name field of all [repository] sections in the /etc/yum.conf configuration file, and in all repository.repo files in the /etc/yum.repos.d/ directory.
Entries which are checked in the Enabled column indicate that the corresponding repository will be used to locate packages to satisfy all update and installation requests (including dependency resolution). The Enabled column corresponds to the enabled=<1 or 0> field in [repository] sections. Checking an unchecked box enables the Yum repository, and unchecking it disables it. Performing either function causes PolicyKit to prompt for superuser authentication to enable or disable the repository. PackageKit actually inserts the enabled=<1 or 0> line into the correct [repository] section if it does not exist, or changes the value if it does. This means that enabling or disabling a repository through the Software Sources window causes that change to persist after closing the window or rebooting the system. The ability to quickly enable and disable repositories based on our needs is a highly-convenient feature of PackageKit.
Note that it is not possible to add or remove Yum repositories through PackageKit.

Showing source RPM, test, and debuginfo repositories

Checking the box at the bottom of the Software Sources tab causes PackageKit to display source RPM, testing and debuginfo repositories as well. This box is unchecked by default.

5.2. Using Add/Remove Software

PackageKit's Software Update GUI window is a separate application from its Add/Remove Software application, although the two have intuitively similar interfaces. To find and install a new package, select ApplicationsSystem ToolsAdd/Remove Software from the Activities menu, or run the gpk-application command at the shell prompt.
PackageKit's Add/Remove Software window
Viewing PackageKit's Add/Remove Software window
Figura 5.4. PackageKit's Add/Remove Software window

5.2.1. Refreshing Software Sources (Yum Repositories)

To enable or disable a Yum repository, open a dialog box by sclicking SystemSoftware Sources, and select the Software Sources tab. Refer to Sección 5.1.2, “Setting the Software Sources” for more information on available configuration options.
After enabling and/or disabling the correct Yum repositories, make sure that you have the latest list of available packages. Click on SystemRefresh Package Lists and PackageKit will obtain the latest lists of packages from all enabled software sources, that is, Yum repositories.

5.2.2. Finding Packages with Filters

You can view the list of all configured and unfiltered (see below) Yum repositories by opening Add/Remove Software and clicking SystemSoftware Sources. Once the software sources have been updated, it is often beneficial to apply some filters so that PackageKit retrieves the results of our Find queries faster. This is especially helpful when performing many package searches. Four of the filters in the Filters drop-down menu are used to split results by matching or not matching a single criterion. By default when PackageKit starts, these filters are all unapplied (No Filter), but once you do filter by one of them, that filter remains set until you either change it or close PackageKit.
Because you are usually searching for available packages that are not installed on the system, click FiltersInstalled and select the Only Available radio button.
Filtering out already-installed packages
filtering out packages which are already installed
Figura 5.5. Filtering out already-installed packages

Also, unless we require development files such as C header files, we can filter for Only End User Files and, in doing so, filter out all of the package_name-devel packages we are not interested in.
Filtering out development packages from the list of Find results
filtering out development packages from our results
Figura 5.6. Filtering out development packages from the list of Find results

The two remaining filters with submenus are:
Graphical
Narrows the search to either applications which provide a GUI interface (Only Graphical) or those that do not. This filter is useful when browsing for GUI applications that perform a specific function.
Free
Search for packages which are considered to be free software Refer to the Fedora Licensing List for details on approved licenses.
The remaining checkbox filters are always either checked or unchecked. They are:
Hide Subpackages
Checking the Hide Subpackages checkbox filters out generally-uninteresting packages that are typically only dependencies of other packages that we want. For example, checking Hide Subpackages and searching for package would cause the following related packages to be filtered out of the Find results (if it exists):
  • package-devel
  • package-libs
  • package-libs-devel
  • package-debuginfo
Only Newest Packages
Checking Only Newest Packages filters out all older versions of the same package from the list of results, which is generally what we want.

Using the Only Newest Packages filter

Checking Only Newest Packages filters out all but the most recent version of any package from the results list. This filter is often combined with the Only Available filter to search for the latest available versions of new (not installed) packages.
Only native packages
Checking the Only Native Packages box on a multilib system causes PackageKit to omit listing results for packages compiled for the architecture that runs in compatibility mode. For example, enabling this filter on a 64-bit system with an AMD64 CPU would cause all packages built for the 32-bit x86 CPU architecture not to be shown in the list of results, even though those packages are able to run on an AMD64 machine. Packages which are architecture-agnostic (i.e. noarch packages such as crontabs-1.10-32.1.el6.noarch.rpm) are never filtered out by checking Only Native Packages. This filter has no affect on non-multilib systems, such as x86 machines.

5.2.3. Installing and Removing Packages (and Dependencies)

With the two filters selected, Only Available and Only End User Files, search for the htop interactive process viewer and highlight the package. You now have access to some very useful information about it, including: a clickable link to the project homepage; the Yum package group it is found in, if any; the license of the package; a pointer to the GNOME menu location from where the application can be opened, if applicable; and the size of the package, which is relevant when we download and install it.
Viewing and installing a package with PackageKit's Add/Remove Software window
Viewing and installing a package with PackageKit's Add/Remove Software window
Figura 5.7. Viewing and installing a package with PackageKit's Add/Remove Software window

When the checkbox next to a package or group is checked, then that item is already installed on the system. Checking an unchecked box causes it to be marked for installation, which only occurs when the Apply button is clicked. In this way, you can search for and select multiple packages or package groups before performing the actual installation transactions. Additionally, you can remove installed packages by unchecking the checked box, and the removal will occur along with any pending installations when Apply is pressed. Dependency resolution , which may add additional packages to be installed or removed, is performed after pressing Apply. PackageKit will then display a window listing those additional packages to install or remove, and ask for confirmation to proceed.
Check htop and click the Apply button. You will then be prompted for the superuser password; enter it, and PackageKit will install htop. One nice feature of PackageKit is that, following installation, it sometimes presents you with a list of your newly-installed applications and offer you the choice of running them immediately. Alternatively, you will remember that finding a package and selecting it in the Add/Remove Software window shows you the Location of where in the GNOME menus its application shortcut is located, which is helpful when you want to run it.
Once it is installed, you can run htop, a colorful and enhanced version of the top process viewer, by opening a shell prompt and entering:
htop
htop is nifty, but we decide that top is good enough for us and we want to uninstall it. Remembering that we need to change the Only Available filter we recently used to install it to Only Installed in FiltersInstalled, we search for htop again and uncheck it. The program did not install any dependencies of its own; if it had, those would be automatically removed as well, as long as they were not also dependencies of any other packages still installed on our system.

Removing a package when other packages depend on it

Although PackageKit automatically resolves dependencies during package installation and removal, it is unable to remove a package without also removing packages which depend on it. This type of operation can only be performed by RPM, is not advised, and can potentially leave your system in a non-functioning state or cause applications to misbehave and/or crash.
Removing a package with PackageKit's Add/Remove Software window
Removing the htop package with PackageKit's Add/Remove Software window
Figura 5.8. Removing a package with PackageKit's Add/Remove Software window

5.2.4. Installing and Removing Package Groups

PackageKit also has the ability to install Yum package groups, which it calls Package collections. Clicking on Package collections in the top-left list of categories in the Software Updates window allows us to scroll through and find the package group we want to install. In this case, we want to install Czech language support (the Czech Support group). Checking the box and clicking Apply informs us how many additional packages must be installed in order to fulfill the dependencies of the package group.
Installing the Czech Support package group
Using PackageKit to install Czech language support with PackageKit's Add/Remove Software window
Figura 5.9. Installing the Czech Support package group

Similarly, installed package groups can be uninstalled by selecting Package collections, unchecking the appropriate checkbox, and applying.

5.2.5. Viewing the Transaction Log

PackageKit maintains a log of the transactions that it performs. To view the log, from the Add/Remove Software window, click SystemSoftware Log, or run the gpk-log command at the shell prompt.
The Software Log Viewer shows the Action, such as Updated Packages or Installed Packages, the Date on which that action was performed, the Username of the user who performed the action, and the front end Application the user used (such as Add/Remove Software, or Update System). The Details column provides the types of the transactions, such as Updated, Installed, or Removed, as well as the list of packages the transactions were performed on.
Viewing the log of package management transactions with the Software Log Viewer
Viewing the log of package management transactions with PackageKit's Software Log Viewer window
Figura 5.10. Viewing the log of package management transactions with the Software Log Viewer

Typing the name of a package in the top text entry field filters the list of transactions to those which affected that package.

5.3. PackageKit Architecture

Fedora provides the PackageKit suite of applications for viewing, updating, installing and uninstalling packages and package groups compatible with your system. Architecturally, PackageKit consists of several graphical front ends that communicate with the packagekitd daemon back end, which communicates with a package manager-specific back end that utilizes Yum to perform the actual transactions, such as installing and removing packages, etc.
Tabla 5.1, “PackageKit GUI windows, menu locations, and shell prompt commands” shows the name of the GUI window, how to start the window from the GNOME desktop or from the Add/Remove Software window, and the name of the command line application that opens that window.
Tabla 5.1. PackageKit GUI windows, menu locations, and shell prompt commands
Window Title Function How to Open Shell Command
Add/Remove Software Install, remove or view package info
From the GNOME panel: SystemAdministrationAdd/Remove Software
gpk-application
Software Update Perform package updates
From the GNOME panel: SystemAdministrationSoftware Update
gpk-update-viewer
Software Sources Enable and disable Yum repositories
From Add/Remove Software: SystemSoftware Sources
gpk-repo
Software Log Viewer View the transaction log
From Add/Remove Software: SystemSoftware Log
gpk-log
Software Update Preferences Set PackageKit preferences gpk-prefs
(Notification Area Alert) Alerts you when updates are available
From the GNOME panel: SystemPreferencesStartup Applications, Startup Programs tab
gpk-update-icon

The packagekitd daemon runs outside the user session and communicates with the various graphical front ends. The packagekitd daemon[1] communicates via the DBus system message bus with another back end, which utilizes Yum's Python API to perform queries and make changes to the system. On Linux systems other than Red Hat Enterprise Linux and Fedora, packagekitd can communicate with other back ends that are able to utilize the native package manager for that system. This modular architecture provides the abstraction necessary for the graphical interfaces to work with many different package managers to perform essentially the same types of package management tasks. Learning how to use the PackageKit front ends means that you can use the same familiar graphical interface across many different Linux distributions, even when they utilize a native package manager other than Yum.
In addition, PackageKit's separation of concerns provides reliability in that a crash of one of the GUI windows—or even the user's X Window session—will not affect any package management tasks being supervised by the packagekitd daemon, which runs outside of the user session.
All of the front end graphical applications discussed in this chapter are provided by the gnome-packagekit package instead of by PackageKit and its dependencies. Users working in a KDE environment may prefer to install the kpackagekit package, which provides a KDE interface for PackageKit.
Finally, PackageKit also comes with a console-based front end called pkcon.

5.4. Recursos adicionales

PackageKit home page — http://www.packagekit.org/index.html
Information about and mailing lists for PackageKit.
PackageKit FAQ — http://www.packagekit.org/pk-faq.html
An informative list of Frequently Asked Questions for the PackageKit software suite.
PackageKit Feature Matrix — http://www.packagekit.org/pk-matrix.html
Cross-reference PackageKit-provided features with the long list of package manager back ends.


[1] System daemons are typically long-running processes that provide services to the user or to other programs, and which are started, often at boot time. Daemons respond to the systemctl command and can be turned on or off permanently by using the systemctl enable or systemctl disablecommands. They can typically be recognized by a d appended to their name, such as the packagekitd daemon. Refer to Capítulo 8, Services and Daemons for information about system services.

Parte III. Interconexión

Capítulo 6. NetworkManager

NetworkManager is a dynamic network control and configuration system that attempts to keep network devices and connections up and active when they are available. NetworkManager consists of a core daemon, a GNOME Notification Area applet that provides network status information, and graphical configuration tools that can create, edit and remove connections and interfaces. NetworkManager can be used to configure the following types of connections: Ethernet, wireless, mobile broadband (such as cellular 3G), and DSL and PPPoE (Point-to-Point over Ethernet). In addition, NetworkManager allows for the configuration of network aliases, static routes, DNS information and VPN connections, as well as many connection-specific parameters. Finally, NetworkManager provides a rich API via D-Bus which allows applications to query and control network configuration and state.
Previous versions of Fedora included the Network Administration Tool, which was commonly known as system-config-network after its command line invocation. In Fedora 17, NetworkManager replaces the former Network Administration Tool while providing enhanced functionality, such as user-specific and mobile broadband configuration. It is also possible to configure the network in Fedora 17 by editing interface configuration files; refer to Capítulo 7, Interfaces de red for more information.
NetworkManager may be installed by default on Fedora. To ensure that it is, first run the following command as the root user:
~]# yum install NetworkManager

6.1. The NetworkManager Daemon

The NetworkManager daemon runs with root privileges and is usually configured to start up at boot time. You can determine whether the NetworkManager daemon is running by entering this command as root:
~]# service NetworkManager status
NetworkManager (pid  1527) is running...
The service command will report NetworkManager is stopped if the NetworkManager service is not running. To start it for the current session:
~]# service NetworkManager start
Run the chkconfig command to ensure that NetworkManager starts up every time the system boots:
~]# chkconfig NetworkManager on
For more information on starting, stopping and managing services and runlevels, refer to Capítulo 8, Services and Daemons.

6.2. Interacting with NetworkManager

Users do not interact with the NetworkManager system service directly. Instead, you can perform network configuration tasks via NetworkManager's Notification Area applet. The applet has multiple states that serve as visual indicators for the type of connection you are currently using.
NetworkManager applet states
A row of four icons representing NetworkManager applet states
Figura 6.1. NetworkManager applet states

If you do not see the NetworkManager applet in the GNOME panel, and assuming that the NetworkManager package is installed on your system, you can start the applet by running the following command as a normal user (not root):
~]$ nm-applet &
After running this command, the applet appears in your Notification Area.

6.2.1. Connecting to a Network

When you click on the applet icon, you are presented with:
  • a list of categorized networks you are currently connected to (such as Wired and Wireless);
  • a list of all Available Networks that NetworkManager has detected;
  • options for connecting to any configured Virtual Private Networks (VPNs); and,
  • options for connecting to hidden or new wireless networks.
If you are connected to a network, its name is presented first under its network type, such as Wired or Wireless with a bulletpoint to the left. When many networks are available, such as wireless access points, the More networks expandable menu entry appears.
The NetworkManager applet's drop-down menu, showing all available and connected-to networks
A screen shot of the NetworkManager applet's drop-down menu, showing all available and connected-to networks
Figura 6.2. The NetworkManager applet's drop-down menu, showing all available and connected-to networks

6.2.2. Configuring New and Editing Existing Connections

Click on the NetworkManager applet to open the drop-down menu, this is the main point of entry for interacting with NetworkManager to configure connections.
If the system has detected a wired connection, the Wired menu entry will appear. If the system has detected a wireless card, then you will also see a Wireless menu entry. Clicking the Wired and Wireless labels or the associated ON OFF indicator to the right will toggle the status between ON and OFF.
Finally, clicking on the Network Settings menu entry opens the Network window, from where you can view some basic network configuration information and initiate configuration tasks.
Configure networks using the Network window
A screen shot of NetworkManager's Network window.
Figura 6.3. Configure networks using the Network window

Then, to configure:

6.2.3. Connecting to a Network Automatically

For any connection type you add or configure, you can choose whether you want NetworkManager to try to connect to that network automatically when it is available.
Procedimiento 6.1. Configuring NetworkManager to Connect to a Network Automatically When Detected
  1. Click on the NetworkManager applet icon in the Notification Area.
  2. Click Network Settings.
    The Network window appears.
  3. Select the type of connection from the left-hand-side menu.
  4. Click on Configure
  5. Select Connect automatically to cause NetworkManager to auto-connect to the connection whenever NetworkManager detects that it is available. Unselect the checkbox if you do not want NetworkManager to connect automatically. If the box is unchecked, you will have to select that connection manually in the NetworkManager applet's initial menu to cause it to connect.

6.2.4. User and System Connections

NetworkManager connections are always either user connections or system connections. Depending on the system-specific policy that the administrator has configured, users may need root privileges to create and modify system connections. NetworkManager's default policy enables users to create and modify user connections, but requires them to have root privileges to add, modify or delete system connections.
User connections are so-called because they are specific to the user who creates them. In contrast to system connections, whose configurations are stored under the /etc/sysconfig/network-scripts/ directory (mainly in ifcfg-<network_type> interface configuration files), user connection settings are stored in the GConf configuration database and the GNOME keyring, and are only available during login sessions for the user who created them. Thus, logging out of the desktop session causes user-specific connections to become unavailable.

Increase security by making VPN connections user-specific

Because NetworkManager uses the GConf and GNOME keyring applications to store user connection settings, and because these settings are specific to your desktop session, it is highly recommended to configure your personal VPN connections as user connections. If you do so, other non-root users on the system cannot view or access these connections in any way.
System connections, on the other hand, become available at boot time and can be used by other users on the system without first logging in to a desktop session.
NetworkManager can quickly and conveniently convert user to system connections and vice versa. Converting a user connection to a system connection causes NetworkManager to create the relevant interface configuration files under the /etc/sysconfig/network-scripts/ directory, and to delete the GConf settings from the user's session. Conversely, converting a system to a user-specific connection causes NetworkManager to remove the system-wide configuration files and create the corresponding GConf/GNOME keyring settings.
The Available to all users checkbox controls whether connections are user-specific or system-wide
A screen shot of the Available to all users checkbox
Figura 6.4. The Available to all users checkbox controls whether connections are user-specific or system-wide

Procedimiento 6.2. Changing a Connection to be User-Specific instead of System-Wide, or Vice-Versa

Root privileges may be required

Depending on the system's policy, you may need root privileges on the system in order to change whether a connection is user-specific or system-wide.
  1. Click on the NetworkManager applet icon in the Notification Area and click Network Settings. The Network window appears.
  2. Select the menu entry for the type of network connection you want to configure.
  3. Select the Configure button.
  4. Check the Available to all users checkbox to ask NetworkManager to make the connection a system-wide connection. Depending on system policy, you may then be prompted for the root password by the PolicyKit application. If so, enter the root password to finalize the change.
    Conversely, uncheck the Available to all users checkbox to make the connection user-specific.

6.3. Establishing Connections

6.3.1. Establishing a Wired (Ethernet) Connection

To establish a wired network connection, click on the NetworkManager applet to open its menu, then click on Network Settings. This opens the Network window.
Select the Wired menu entry and then click Configure.
Editing the newly-created Wired connection 1
A screen shot of Network Manager's Wired tab
Figura 6.5. Editing the newly-created Wired connection 1

The system startup scripts create and configure a single wired connection called System eth0 by default on all systems. Although you can edit System eth0, creating a new wired connection for your custom settings is recommended. You can create a new wired connection by selecting the Wired tab and clicking the Add button.

The dialog for adding and editing connections is the same

When you add a new connection by clicking the Add button, NetworkManager creates a new configuration file for that connection and then opens the same dialog that is used for editing an existing connection. There is no difference between these dialogs. In effect, you are always editing a connection; the difference only lies in whether that connection previously existed or was just created by NetworkManager when you clicked Add.

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:
  • Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Wired tab of the Network Connections window.
  • Connect automatically — Check this box if you want NetworkManager to auto-connect to this connection when it is available. Refer to Sección 6.2.3, “Connecting to a Network Automatically” for more information.
  • Available to all users — Check this box to create a connection available to all users on the system. Changing this setting may require root privileges. Refer to Sección 6.2.4, “User and System Connections” for details.

Configuring the Wired Tab

The final two configurable settings are located within the Wired tab itself: the first is a text-entry field where you can specify a MAC (Media Access Control) address, and the second allows you to specify the MTU (Maximum Transmission Unit) value. Normally, you can leave the MAC address field blank and the MTU set to automatic. These defaults will suffice unless you are associating a wired connection with a second or specific NIC, or performing advanced networking. In such cases, refer to the following descriptions:
MAC Address
Network hardware such as a Network Interface Card (NIC) has a unique MAC address (Media Access Control; also known as a hardware address) that identifies it to the system. Running the ip addr command will show the MAC address associated with each interface. For example, in the following ip addr output, the MAC address for the eth0 interface (which is 52:54:00:26:9e:f1) immediately follows the link/ether keyword:
~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
    link/ether 52:54:00:26:9e:f1 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.251/24 brd 192.168.122.255 scope global eth0
    inet6 fe80::5054:ff:fe26:9ef1/64 scope link
       valid_lft forever preferred_lft forever
A single system can have one or more NICs installed on it. The MAC address field therefore allows you to associate a specific NIC with a specific connection (or connections). As mentioned, you can determine the MAC address using the ip addr command, and then copy and paste that value into the MAC address text-entry field.
MTU
The MTU (Maximum Transmission Unit) value represents the size in bytes of the largest packet that the connection will use to transmit. This value defaults to 1500 when using IPv4, or a variable number 1280 or higher for IPv6, and does not generally need to be specified or changed.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your wired connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet. See Sección 6.2.1, “Connecting to a Network” for information on using your new or altered connection.
You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.
Then, to configure:

6.3.2. Establishing a Wireless Connection

This section explains how to use NetworkManager to configure a wireless (also known as Wi-Fi or 802.1a/b/g/n) connection to an Access Point.
To configure a mobile broadband (such as 3G) connection, refer to Sección 6.3.3, “Establishing a Mobile Broadband Connection”.

Quickly Connecting to an Available Access Point

The easiest way to connect to an available access point is to click on the NetworkManager applet, locate the Service Set Identifier (SSID) of the access point in the list of available networks, and click on it. If the access point is secured, a dialog prompts you for authentication.
NetworkManager tries to auto-detect the type of security used by the access point. If there are multiple possibilities, NetworkManager guesses the security type and presents it in the Wireless security dropdown menu. To see if there are multiple choices, click the Wireless security dropdown menu and select the type of security the access point is using. If you are unsure, try connecting to each type in turn. Finally, enter the key or passphrase in the Password field. Certain password types, such as a 40-bit WEP or 128-bit WPA key, are invalid unless they are of a requisite length. The Connect button will remain inactive until you enter a key of the length required for the selected security type. To learn more about wireless security, refer to Sección 6.4.2, “Configuring Wireless Security”.
If NetworkManager connects to the access point successfully, its applet icon will change into a graphical indicator of the wireless connection's signal strength.
Applet icon indicating wireless connection signal strength
A screen shot of the Signal Strength Applet icon indicating wireless connection signal strength
Figura 6.6. Applet icon indicating wireless connection signal strength

Connecting to a Hidden Wireless Network

All access points have a Service Set Identifier (SSID) to identify them. However, an access point may be configured not to broadcast its SSID, in which case it is hidden, and will not show up in NetworkManager's list of Available networks. You can still connect to a wireless access point that is hiding its SSID as long as you know its SSID, authentication method, and secrets.
To connect to a hidden wireless network, click NetworkManager's applet icon and then click Network Settings. The Network window appears. Select the Wireless menu entry and then click to the right of the Network Name to activate the drop-down list. Select Other. The Hidden wireless network dialog window appears.
Hidden wireless network dialog window
A screen shot of NetworkManager's Hidden wireless network dialog window
Figura 6.7. Hidden wireless network dialog window

If you have connected to the hidden network before, use the Connection drop-down list to select it, and click Connect. If you have not, leave the Connection dropdown as New..., enter the SSID of the hidden network, select its Wireless security method, enter the correct authentication secrets, and click Connect.
For more information on wireless security settings, refer to Sección 6.4.2, “Configuring Wireless Security”.

Editing a Connection, or Creating a Completely New One

You can create a new connection by clicking on the NetworkManager applet to open its menu.
  1. Click on the NetworkManager applet icon in the Notification Area and click Network Settings. The Network window appears.
  2. Select the Wireless menu entry.
  3. Click to the right of the Network Name to activate the drop-down list.
  4. Select the SSID you want to connect to.
  5. Click the Configure button. The editing a wireless connection window appears.
Editing the newly-created Wireless connection
A screen shot of the NetworkManager's editing a wireless connection window. The Wireless tab has been selected on the left.
Figura 6.8. Editing the newly-created Wireless connection

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:
  • Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Wireless tab of the Network Connections window. By default, wireless connections are named the same as the SSID of the wireless access point. You can rename the wireless connection without affecting its ability to connect, as in the example above, but it is recommended to retain the SSID name.
  • Connect automatically — Check this box if you want NetworkManager to auto-connect to this connection when it is available. Refer to Sección 6.2.3, “Connecting to a Network Automatically” for more information.
  • Available to all users — Check this box to create a connection available to all users on the system. Changing this setting may require root privileges. Refer to Sección 6.2.4, “User and System Connections” for details.

Configuring the Wireless Tab

SSID
All access points have a Service Set identifier to identify them. However, an access point may be configured not to broadcast its SSID, in which case it is hidden, and will not show up in NetworkManager's list of Available networks. You can still connect to a wireless access point that is hiding its SSID as long as you know its SSID (and authentication secrets).
For information on connecting to a hidden wireless network, refer to Sección 6.3.2, “Connecting to a Hidden Wireless Network”.
Mode
Infrastructure — Set Mode to Infrastructure if you are connecting to a dedicated wireless access point or one built into a network device such as a router or a switch.
Ad-hoc — Set Mode to Ad-hoc if you are creating a peer-to-peer network for two or more mobile devices to communicate directly with each other. If you use Ad-hoc mode, referred to as Independent Basic Service Set (IBSS) in the 802.11 standard, you must ensure that the same SSID is set for all participating wireless devices, and that they are all communicating over the same channel.
BSSID
The Basic Service Set Identifier (BSSID) is the MAC address of the specific wireless access point you are connecting to when in Infrastructure mode. This field is blank by default, and you are able to connect to a wireless access point by SSID without having to specify its BSSID. If the BSSID is specified, it will force the system to associate to a specific access point only.
For ad-hoc networks, the BSSID is generated randomly by the mac80211 subsystem when the ad-hoc network is created. It is not displayed by NetworkManager
MAC address
Like an Ethernet Network Interface Card (NIC), a wireless adapter has a unique MAC address (Media Access Control; also known as a hardware address) that identifies it to the system. Running the ip addr command will show the MAC address associated with each interface. For example, in the following ip addr output, the MAC address for the wlan0 interface (which is 00:1c:bf:02:f8:70) immediately follows the link/ether keyword:
~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
    link/ether 52:54:00:26:9e:f1 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.251/24 brd 192.168.122.255 scope global eth0
    inet6 fe80::5054:ff:fe26:9ef1/64 scope link
       valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
    link/ether 00:1c:bf:02:f8:70 brd ff:ff:ff:ff:ff:ff
    inet 10.200.130.67/24 brd 10.200.130.255 scope global wlan0
    inet6 fe80::21c:bfff:fe02:f870/64 scope link
       valid_lft forever preferred_lft forever
A single system could have one or more wireless network adapters connected to it. The MAC address field therefore allows you to associate a specific wireless adapter with a specific connection (or connections). As mentioned, you can determine the MAC address using the ip addr command, and then copy and paste that value into the MAC address text-entry field.
MTU
The MTU (Maximum Transmission Unit) value represents the size in bytes of the largest packet that the connection will use to transmit. If set to a non-zero number, only packets of the specified size or smaller will be transmitted. Larger packets are broken up into multiple Ethernet frames. It is recommended to leave this setting on automatic.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing the wireless connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can successfully connect to your the modified connection by selecting it from the NetworkManager Notification Area applet. See Sección 6.2.1, “Connecting to a Network” for details on selecting and connecting to a network.
You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.
Then, to configure:

6.3.3. Establishing a Mobile Broadband Connection

You can use NetworkManager's mobile broadband connection abilities to connect to the following 2G and 3G services:
  • 2G — GPRS (General Packet Radio Service) or EDGE (Enhanced Data Rates for GSM Evolution)
  • 3G — UMTS (Universal Mobile Telecommunications System) or HSPA (High Speed Packet Access)
Your computer must have a mobile broadband device (modem), which the system has discovered and recognized, in order to create the connection. Such a device may be built into your computer (as is the case on many notebooks and netbooks), or may be provided separately as internal or external hardware. Examples include PC card, USB Modem or Dongle, mobile or cellular telephone capable of acting as a modem.
Procedimiento 6.3. Adding a New Mobile Broadband Connection
You can configure a mobile broadband connection by opening the Network Connections window and selecting the Mobile Broadband tab.
  1. Open the Network Connections window by running, as a normal user:
    ~]$ nm-connection-editor &
    
    The Network Connections window appears.
  2. Select the Mobile Broadband tab.
  3. Click the Add button to open the Set up a Mobile Broadband Connection assistant.
  4. Under Create a connection for this mobile broadband device, choose the 2G- or 3G-capable device you want to use with the connection. If the dropdown menu is inactive, this indicates that the system was unable to detect a device capable of mobile broadband. In this case, click Cancel, ensure that you do have a mobile broadband-capable device attached and recognized by the computer and then retry this procedure. Click the Forward button.
  5. Select the country where your service provider is located from the list and click the Forward button.
  6. Select your provider from the list or enter it manually. Click the Forward button.
  7. Select your payment plan from the dropdown menu and confirm the Access Point Name (APN) is correct. Click the Forward button.
  8. Review and confirm the settings and then click the Apply button.
  9. Edit the mobile broadband-specific settings by referring to the Configuring the Mobile Broadband Tab description below .
Procedimiento 6.4. Editing an Existing Mobile Broadband Connection
Follow these steps to edit an existing mobile broadband connection.
  1. Open the Network Connections window by running, as a normal user:
    ~]$ nm-connection-editor &
    
    The Network Connections window appears.
  2. Select the Mobile Broadband tab.
  3. Select the connection you wish to edit and click the Edit button.
  4. Configure the connection name, auto-connect behavior, and availability settings.
    Three settings in the Editing dialog are common to all connection types:
    • Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the Mobile Broadband tab of the Network Connections window.
    • Connect automatically — Check this box if you want NetworkManager to auto-connect to this connection when it is available. Refer to Sección 6.2.3, “Connecting to a Network Automatically” for more information.
    • Available to all users — Check this box to create a connection available to all users on the system. Changing this setting may require root privileges. Refer to Sección 6.2.4, “User and System Connections” for details.
  5. Edit the mobile broadband-specific settings by referring to the Configuring the Mobile Broadband Tab description below .

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your mobile broadband connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet. See Sección 6.2.1, “Connecting to a Network” for information on using your new or altered connection.
You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.
Then, to configure:

Configuring the Mobile Broadband Tab

If you have already added a new mobile broadband connection using the assistant (refer to Procedimiento 6.3, “Adding a New Mobile Broadband Connection” for instructions), you can edit the Mobile Broadband tab to disable roaming if home network is not available, assign a network ID, or instruct NetworkManager to prefer a certain technology (such as 3G or 2G) when using the connection.
Number
The number that is dialed to establish a PPP connection with the GSM-based mobile broadband network. This field may be automatically populated during the initial installation of the broadband device. You can usually leave this field blank and enter the APN instead.
Username
Enter the username used to authenticate with the network. Some providers do not provide a username, or accept any username when connecting to the network.
Password
Enter the password used to authenticate with the network. Some providers do not provide a password, or accept any password.
APN
Enter the Access Point Name (APN) used to establish a connection with the GSM-based network. Entering the correct APN for a connection is important because it often determines:
  • how the user is billed for their network usage; and/or
  • whether the user has access to the Internet, an intranet, or a subnetwork.
Network ID
Entering a Network ID causes NetworkManager to force the device to register only to a specific network. This can be used to ensure the connection does not roam when it is not possible to control roaming directly.
Type
Any — The default value of Any leaves the modem to select the fastest network.
3G (UMTS/HSPA) — Force the connection to use only 3G network technologies.
2G (GPRS/EDGE) — Force the connection to use only 2G network technologies.
Prefer 3G (UMTS/HSPA) — First attempt to connect using a 3G technology such as HSPA or UMTS, and fall back to GPRS or EDGE only upon failure.
Prefer 2G (GPRS/EDGE) — First attempt to connect using a 2G technology such as GPRS or EDGE, and fall back to HSPA or UMTS only upon failure.
Allow roaming if home network is not available
Uncheck this box if you want NetworkManager to terminate the connection rather than transition from the home network to a roaming one, thereby avoiding possible roaming charges. If the box is checked, NetworkManager will attempt to maintain a good connection by transitioning from the home network to a roaming one, and vice versa.
PIN
If your device's SIM (Subscriber Identity Module) is locked with a PIN (Personal Identification Number), enter the PIN so that NetworkManager can unlock the device. NetworkManager must unlock the SIM if a PIN is required in order to use the device for any purpose.

6.3.4. Establishing a VPN Connection

Establishing an encrypted Virtual Private Network (VPN) enables you to communicate securely between your Local Area Network (LAN), and another, remote LAN. After successfully establishing a VPN connection, a VPN router or gateway performs the following actions upon the packets you transmit:
  1. it adds an Authentication Header for routing and authentication purposes;
  2. it encrypts the packet data; and,
  3. it encloses the data with an Encapsulating Security Payload (ESP), which constitutes the decryption and handling instructions.
The receiving VPN router strips the header information, decrypts the data, and routes it to its intended destination (either a workstation or other node on a network). Using a network-to-network connection, the receiving node on the local network receives the packets already decrypted and ready for processing. The encryption/decryption process in a network-to-network VPN connection is therefore transparent to clients.
Because they employ several layers of authentication and encryption, VPNs are a secure and effective means of connecting multiple remote nodes to act as a unified intranet.
Procedimiento 6.5. Adding a New VPN Connection
  1. You can configure a new VPN connection by opening the Network window and selecting the VPN menu entry.
  2. Click on the NetworkManager applet icon in the Notification Area. Clicking on the Network Settings menu entry opens the Network window, from where you can view some basic network configuration information and initiate configuration tasks.
  3. Click on the VPN menu entry followed by Configure and proceed to Sección 6.3.4, “Establishing a VPN Connection”. If there is no VPN menu entry click on the plus sign at the bottom. A dialog box appears. Ensure the interface is set to VPN.

    A VPN plug-in is required

    The appropriate NetworkManager VPN plug-in for the VPN type you want to configure must be installed. (refer to Sección 4.2.4, “Installing Packages” for more information on how to install new packages in Fedora 17).
  4. Click the Create button to open the Choose a VPN Connection Type assistant.
  5. Select the VPN protocol for the gateway you are connecting to from the dropdown menu. The VPN protocols available for selection in the dropdown menu corresponds to the NetworkManager VPN plug-ins installed. For example, if the NetworkManager VPN plug-in for openswanis installed then the IPsec based VPN will be selectable from the dropdown menu.
    After selecting the correct one, press the Create... button.
  6. The Editing VPN Connection 1 window then appears. This window presents settings customized for the type of VPN connection you selected in Paso 5.
You can configure an existing VPN connection by opening the Network window and selecting the VPN menu entry.
  1. Click on the NetworkManager applet icon in the Notification Area and click Network Settings. The Network window appears.
  2. Select the VPN menu entry.
  3. Select the connection you wish to edit and click the Configure button.
Editing the newly-created VPN connection 1.
A screenshot of the Editing VPN connection 1 window. The VPN tab is on the left and in the foreground
Figura 6.9. Editing the newly-created VPN connection 1.

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

Three settings in the Editing dialog are common to all connection types:
  • Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the VPN tab of the Network Connections window.
  • Connect automatically — Check this box if you want NetworkManager to auto-connect to this connection when it is available. Refer to Sección 6.2.3, “Connecting to a Network Automatically” for more information.
  • Available to all users — Check this box to create a connection available to all users on the system. Changing this setting may require root privileges. Refer to Sección 6.2.4, “User and System Connections” for details.

Configuring the VPN Tab

Gateway
The name or IP address of the remote VPN gateway.
Group name
The name of a VPN group configured on the remote gateway.
User password
If required, enter the password used to authenticate with the VPN.
Group password
If required, enter the password used to authenticate with the VPN.
User name
If required, enter the username used to authenticate with the VPN.
Phase1 Algorithms
If required, enter the algorithms to be used to authenticate and set up an encrypted channel.
Phase2 Algorithms
If required, enter the algorithms to be used for the IPsec negotiations.
Domain
If required, enter the Domain Name.
NAT traversal
Cisco UDP (default) — IPsec over UDP.
NAT-T — ESP encapsulation and IKE extensions are used to handle NAT Traversal.
Disabled — No special NAT measures required.
Disable Dead Peer Detection — Disable the sending of probes to the remote gateway or endpoint.

Saving Your New (or Modified) Connection and Making Further Configurations

Once you have finished editing your new VPN connection, click the Apply button and NetworkManager will immediately save your customized configuration. Given a correct configuration, you can connect to your new or customized connection by selecting it from the NetworkManager Notification Area applet. See Sección 6.2.1, “Connecting to a Network” for information on using your new or altered connection.
You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.
Then, to configure:

6.3.5. Establishing a DSL Connection

Open the Network Connections window by running, as a normal user:
~]$ nm-connection-editor &
Select the DSL tab and click Add.
Username
Enter the username used to authenticate with the service provider.
Service
Leave blank unless otherwise directed.
Password
Enter the password supplied by the service provider.

6.3.6. Establishing Routes

Configuring static network routes
A screen shot of the static routes window
Figura 6.10. Configuring static network routes

Addresses
Address — The IP address of a network, sub-net or host.
Netmask — The netmask or prefix length of the IP address just entered.
Gateway — The IP address of the gateway leading to the network, sub-net or host.
Metric — A network cost, that is to say a preference value to give to this route. Lower values will be preferred over higher values.
Ignore automatically obtained routes
Select this check box to only use manually entered routes for the VPN tunnel.
Use this connection only for resources on its network
Select this checkbox to prevent the VPN from becoming the default route. Then only the specific routes sent by the VPN server (or routes entered here manually) will be routed over the VPN tunnel.

6.4. Configuring Connection Settings

6.4.1. Configuring 802.1x Security

802.1x security is the name of the IEEE standard for port-based Network Access Control (PNAC). Simply put, 802.1x security is a way of defining a logical network out of a physical one. All clients who want to join the logical network must authenticate with the server (a router, for example) using the correct 802.1x authentication method.
802.1x security is most often associated with securing wireless networks (WLANs), but can also be used to prevent intruders with physical access to the network (LAN) from gaining entry. In the past, DHCP servers were configured not to lease IP addresses to unauthorized users, but for various reasons this practice is both impractical and insecure, and thus is no longer recommended. Instead, 802.1x security is used to ensure a logically-secure network through port-based authentication.
802.1x provides a framework for WLAN and LAN access control and serves as an envelope for carrying one of the Extensible Authentication Protocol (EAP) types. An EAP type is a protocol that defines how WLAN security is achieved on the network.
You can configure 802.1x security for a wired or wireless connection type by opening the Network Connections window (refer to Sección 6.2.2, “Configuring New and Editing Existing Connections”) and following the applicable procedure:
Procedimiento 6.6. For a wired connection...
  1. Select the Wired tab.
  2. Either click on Add to add a new network connection for which you want to configure 802.1x security, or select an existing connection and click Edit.
  3. Then select the 802.1x Security tab and check the Use 802.1x security for this connection checkbox to enable settings configuration.
Procedimiento 6.7. For a wireless connection...
  1. Select the Wireless tab.
  2. Either click on Add to add a new network connection for which you want to configure 802.1x security, or select an existing connection and click Edit.
  3. Then click the Security dropdown and choose one of the following security methods: LEAP, Dynamic WEP (802.1x), or WPA & WPA2 Enterprise.
  4. Refer to Sección 6.4.1.1, “Configuring TLS (Transport Layer Security) Settings” for descriptions of which EAP types correspond to your selection in the Security dropdown.

6.4.1.1. Configuring TLS (Transport Layer Security) Settings

With Transport Layer Security, the client and server mutually authenticate using the TLS protocol. The server demonstrates that it holds a digital certificate, the client proves its own identity using its client-side certificate, and key information is exchanged. Once authentication is complete, the TLS tunnel is no longer used. Instead, the client and server use the exchanged keys to encrypt data using AES, TKIP or WEP.
The fact that certificates must be distributed to all clients who want to authenticate means that the EAP-TLS authentication method is very strong, but also more complicated to set up. Using TLS security requires the overhead of a public key infrastructure (PKI) to manage certificates. The benefit of using TLS security is that a compromised password does not allow access to the (W)LAN: an intruder must also have access to the authenticating client's private key.
Network Manger does not determine the version of TLS supported. Network Manager gathers the parameters entered by the user and passes them to the daemon, wpa_supplicant, that handles the procedure. It, in turn, uses OpenSSL to establish the TLS tunnel. OpenSSL itself negotiates the SSL/TLS protocol version. It uses the highest version both ends support.
Identity
Identity string for EAP authentication methods, such as a username or login name.
User certificate
Click to browse for, and select, a user's certificate.
CA certificate
Click to browse for, and select, a Certificate Authority's certificate.
Private key
Click to browse for, and select, a user's private key file.
Private key password
Enter the user password corresponding to the user's private key.

6.4.1.2. Configuring Tunneled TLS Settings

Anonymous identity
This value is used as the unencrypted identity.
CA certificate
Click to browse for, and select, a Certificate Authority's certificate.
Inner authentication
PAP — Password Authentication Protocol.
MSCHAP — Challenge Handshake Authentication Protocol.
MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.
CHAP — Challenge Handshake Authentication Protocol.
Username
Enter the username to be used in the authentication process.
Password
Enter the password to be used in the authentication process.

6.4.1.3. Configuring Protected EAP (PEAP) Settings

Anonymous Identity
This value is used as the unencrypted identity.
CA certificate
Click to browse for, and select, a Certificate Authority's certificate.
PEAP version
The version of Protected EAP to use. Automatic, 0 or 1.
Inner authentication
MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.
MD5 — Message Digest 5, a cryptographic hash function.
GTC — Generic Token Card.
Username
Enter the username to be used in the authentication process.
Password
Enter the password to be used in the authentication process.

6.4.2. Configuring Wireless Security

Security
None — Do not encrypt the Wi-Fi connection.
WEP 40/128-bit Key — Wired Equivalent Privacy (WEP), from the IEEE 802.11 standard. Uses a single pre-shared key (PSK).
WEP 128-bit Passphrase — An MD5 hash of the passphrase will be used to derive a WEP key.
LEAP — Lightweight Extensible Authentication Protocol, from Cisco Systems.
Dynamic WEP (802.1x) — WEP keys are changed dynamically.
WPA & WPA2 Personal — Wi-Fi Protected Access (WPA), from the draft IEEE 802.11i standard. A replacement for WEP. Wi-Fi Protected Access II (WPA2), from the 802.11i-2004 standard. Personal mode uses a pre-shared key (WPA-PSK).
WPA & WPA2 Enterprise — WPA for use with a RADUIS authentication server to provide IEEE 802.1x network access control.
Password
Enter the password to be used in the authentication process.

6.4.3. Configuring PPP (Point-to-Point) Settings

Configure Methods
Use point-to-point encryption (MPPE)
Microsoft Point-To-Point Encryption protocol (RFC 3078).
Allow BSD data compression
PPP BSD Compression Protocol (RFC 1977).
Allow Deflate data compression
PPP Deflate Protocol (RFC 1979).
Use TCP header compression
Compressing TCP/IP Headers for Low-Speed Serial Links (RFC 1144).
Send PPP echo packets
LCP Echo-Request and Echo-Reply Codes for loopback tests (RFC 1661).

6.4.4. Configuring IPv4 Settings

Editing the IPv4 Settings Tab
A screen shot of NetworkManager's IPv4 Settings Tab
Figura 6.11. Editing the IPv4 Settings Tab

The IPv4 Settings tab allows you to configure the method by which you connect to the Internet and enter IP address, route, and DNS information as required. The IPv4 Settings tab is available when you create and modify one of the following connection types: wired, wireless, mobile broadband, VPN or DSL.
If you are using DHCP to obtain a dynamic IP address from a DHCP server, you can simply set Method to Automatic (DHCP).

Setting the Method

Available IPv4 Methods by Connection Type
When you click the Method dropdown menu, depending on the type of connection you are configuring, you are able to select one of the following IPv4 connection methods. All of the methods are listed here according to which connection type or types they are associated with.
Method
Automatic (DHCP) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses. You do not need to fill in the DHCP client ID field.
Automatic (DHCP) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.
Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be selected as per RFC 3927.
Shared to other computers — Choose this option if the interface you are configuring is for sharing an Internet or WAN connection.
Wired, Wireless and DSL Connection Methods
Manual — Choose this option if the network you are connecting to does not have a DHCP server and you want to assign IP addresses manually.
Mobile Broadband Connection Methods
Automatic (PPP) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.
Automatic (PPP) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.
VPN Connection Methods
Automatic (VPN) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.
Automatic (VPN) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.
DSL Connection Methods
Automatic (PPPoE) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.
Automatic (PPPoE) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.

6.4.5. Configuring IPv6 Settings

Method
Ignore — Choose this option if you want to disable IPv6 settings.
Automatic — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses.
Automatic, addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.
Manual — Choose this option if the network you are connecting to does not have a DHCP server and you want to assign IP addresses manually.
Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be selected as per RFC 4862.
Shared to other computers — Choose this option if the interface you are configuring is for sharing an Internet or WAN connection.
Addresses
DNS servers — Enter a comma separated list of DNS servers.
Search domains — Enter a comma separated list of domain controllers.

6.5. NetworkManager Architecture

Capítulo 7. Interfaces de red

En Fedora, todas las comunicaciones de red ocurren entre las interfaces de software configuradas y los dispositivos físicos de red conectados al sistema.
The configuration files for network interfaces are located in the /etc/sysconfig/network-scripts/ directory. The scripts used to activate and deactivate these network interfaces are also located here. Although the number and type of interface files can differ from system to system, there are three categories of files that exist in this directory:
  1. Archivo de configuración de interfaces
  2. Scripts de control de interfaces
  3. Archivos de funciones de red
Los archivos en cada una de estas categorías trabajan juntos para habilitar varios dispositivos de red.
Este capítulo explora la relación entre estos archivos y cómo son utilizados.

7.1. Archivos de configuración de red

Antes de ingresar a la interfaz de configuración, permítanos enumerar los archivos primarios utilizados en la configuración de red. Entender la función que estos archivos desarrollan en la configuración de la red puede ser de mucha utilidad a la hora de personalizar un sistema Fedora
Los principales archivos de configuración de la red son los siguientes:
/etc/hosts
The main purpose of this file is to resolve hostnames that cannot be resolved any other way. It can also be used to resolve hostnames on small networks with no DNS server. Regardless of the type of network the computer is on, this file should contain a line specifying the IP address of the loopback device (127.0.0.1) as localhost.localdomain. For more information, refer to the hosts(5) manual page.
/etc/resolv.conf
This file specifies the IP addresses of DNS servers and the search domain. Unless configured to do otherwise, the network initialization scripts populate this file. For more information about this file, refer to the resolv.conf(5) manual page.
/etc/sysconfig/network
Este archivo especifica la información de enrutamiento y equipo para todas las interfaces de red. Para más información sobre este archivo y las directivas que acepta, consulte Sección D.1.13, “ /etc/sysconfig/network ”.
/etc/sysconfig/network-scripts/ifcfg-interface-name
Para cada interfaz de red existe un script de configuración de interfaz correspondiente. Cada uno de esos archivos ofrece información específica a una determinada interfaz de red. Consulte Sección 7.2, “Archivos de configuración de interfaz” para obtener mayor información relacionada con este tipo de archivos y sobre los directorios que acepta.

Nombres de las interfaces de red

Los nombres de las interfaces de red pueden ser diferentes de acuerdo al tipo de harware. Consulte Apéndice A, Nombramiento Consistente de Dispositivos de Red para obtener mayor información.

El directorio /etc/sysconfig/networking/

The /etc/sysconfig/networking/ directory is used by the now deprecated Network Administration Tool (system-config-network). Its contents should not be edited manually. Using only one method for network configuration is strongly encouraged, due to the risk of configuration deletion. For more information about configuring network interfaces using graphical configuration tools, refer to Capítulo 6, NetworkManager.

7.2. Archivos de configuración de interfaz

Los archivos de configuración de interfaz controlan las interfaces de software de los dispositivos de red individuales. Cuando el sistema se inicia utiliza estos archivos para determinar qué interfaces levantar y de qué manera configurarlas. Estos archivos por lo general son denominados ifcfg-nombre , donde nombre indica el nombre del dispositivo que es controlado por el archivo de configuración.

7.2.1. Interfaces Ethernet

One of the most common interface files is /etc/sysconfig/network-scripts/ifcfg-eth0, which controls the first Ethernet network interface card or NIC in the system. In a system with multiple NICs, there are multiple ifcfg-ethX files (where X is a unique number corresponding to a specific interface). Because each device has its own configuration file, an administrator can control how each interface functions individually.
El siguiente es un archivo ifcfg-eth0 de ejemplo para un sistema usando dirección IP fija:
DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
NETMASK=255.255.255.0
IPADDR=10.0.1.27
USERCTL=no
Los valores necesarios en un archivo de configuración de interfaz pueden modificarse de acuerdo a otros valores diferentes. Por ejemplo, el archivo ifcfg-eth0 de una interfaz que esté utilizando DHCP luce diferente de acuerdo a la información IP ofrecida por el servidor DHCP:
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
NetworkManager is graphical configuration tool which provides an easy way to make changes to the various network interface configuration files (refer to Capítulo 6, NetworkManager for detailed instructions on using this tool).
Sin embargo, también es posible modificar manualmente los archivos de configuración para una interfaz de red dada.
Abajo hay un listado de los parámetros configurables en un archivo de configuración de interfaz Ethernet.
BONDING_OPTS=parameters
sets the configuration parameters for the bonding device, and is used in /etc/sysconfig/network-scripts/ifcfg-bondN (see Sección 7.2.2, “Interfaces de unión de canales”). These parameters are identical to those used for bonding devices in /sys/class/net/bonding_device/bonding, and the module parameters for the bonding driver as described in bonding Module Directives.
This configuration method is used so that multiple bonding devices can have different configurations. It is highly recommended to place all of your bonding options after the BONDING_OPTS directive in ifcfg-name. Do not specify options for the bonding device in /etc/modprobe.d/bonding.conf, or in the deprecated /etc/modprobe.conf file.
BOOTPROTO=protocol
where protocol is one of the following:
  • none — No boot-time protocol should be used.
  • bootp — The BOOTP protocol should be used.
  • dhcp — The DHCP protocol should be used.
BROADCAST=address
where address is the broadcast address. This directive is deprecated, as the value is calculated automatically with ipcalc.
DEVICE=name
where name is the name of the physical device (except for dynamically-allocated PPP devices where it is the logical name).
DHCP_HOSTNAME=name
donde nombre es un pequeño nombre de equipo que será enviado al servidor DHCP. Utilice esta opción sólo si el servidor DHCP necesita que el cliente indique un nombre de equipo antes de recibir una dirección IP.
DNS{1,2}=address
where address is a name server address to be placed in /etc/resolv.conf if the PEERDNS directive is set to yes.
ETHTOOL_OPTS=options
where options are any device-specific options supported by ethtool. For example, if you wanted to force 100Mb, full duplex:
ETHTOOL_OPTS="autoneg off speed 100 duplex full"
Instead of a custom initscript, use ETHTOOL_OPTS to set the interface speed and duplex settings. Custom initscripts run outside of the network init script lead to unpredictable results during a post-boot network service restart.

Set autoneg off before changing speed or duplex settings

Changing speed or duplex settings almost always requires disabling autonegotiation with the autoneg off option. This option needs to be stated first, as the option entries are order-dependent.
GATEWAY=address
donde address es la dirección IP del enrutador o dispositivo de puerta de enlace (si existe).
HOTPLUG=answer
donde answer es una de las siguientes:
  • yes — This device should be activated when it is hot-plugged (this is the default option).
  • no — This device should not be activated when it is hot-plugged.
La opción HOTPLUG=no puede ser utilizada para prevenir que una interfaz de enlace de canales sea activada cada vez que se cargue un módulo de enlace del kernel.
Consulte xref linkend="s2-networkscripts-interfaces-chan" /> para obtener mayor información acerca de las interfaces de enlace de canales.
HWADDR=MAC-address
where MAC-address is the hardware address of the Ethernet device in the form AA:BB:CC:DD:EE:FF. This directive must be used in machines containing more than one NIC to ensure that the interfaces are assigned the correct device names regardless of the configured load order for each NIC's module. This directive should not be used in conjunction with MACADDR.

Nota

Persistent device names are now handled by /etc/udev/rules.d/70-persistent-net.rules.
IPADDR=address
where address is the IP address.
LINKDELAY=time
donde tiempo es la cantidad de segundos a esperar la negociación del enlace antes de configurar este dispositivo.
MACADDR=MAC-address
where MAC-address is the hardware address of the Ethernet device in the form AA:BB:CC:DD:EE:FF.
This directive is used to assign a MAC address to an interface, overriding the one assigned to the physical NIC. This directive should not be used in conjunction with the HWADDR directive.
MASTER=bond-interface
where bond-interface is the channel bonding interface to which the Ethernet interface is linked.
This directive is used in conjunction with the SLAVE directive.
Consulte xref linkend="s2-networkscripts-interfaces-chan" /> para obtener mayor información acerca de las interfaces de enlace de canales.
NETMASK=mask
where mask is the netmask value.
NETWORK=address
where address is the network address. This directive is deprecated, as the value is calculated automatically with ipcalc.
NM_CONTROLLED=answer
donde answer es una de las siguientes:
  • yes — NetworkManager is permitted to configure this device.This is the default behavior and can be omitted.
  • no — NetworkManager is not permitted to configure this device.
ONBOOT=answer
donde answer es una de las siguientes:
  • yes — This device should be activated at boot-time.
  • no — This device should not be activated at boot-time.
PEERDNS=answer
donde answer es una de las siguientes:
  • yes — Modify /etc/resolv.conf if the DNS directive is set. If using DHCP, then yes is the default.
  • no — Do not modify /etc/resolv.conf.
SLAVE=answer
donde answer es una de las siguientes:
  • yes — This device is controlled by the channel bonding interface specified in the MASTER directive.
  • no — This device is not controlled by the channel bonding interface specified in the MASTER directive.
This directive is used in conjunction with the MASTER directive.
Refer to Sección 7.2.2, “Interfaces de unión de canales” for more about channel bonding interfaces.
SRCADDR=address
where address is the specified source IP address for outgoing packets.
USERCTL=answer
donde answer es una de las siguientes:
  • yes — Non-root users are allowed to control this device.
  • no — Non-root users are not allowed to control this device.

7.2.2. Interfaces de unión de canales

Fedora allows administrators to bind multiple network interfaces together into a single channel using the bonding kernel module and a special network interface called a channel bonding interface. Channel bonding enables two or more network interfaces to act as one, simultaneously increasing the bandwidth and providing redundancy.
To create a channel bonding interface, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-bondN, replacing N with the number for the interface, such as 0.
The contents of the file can be identical to whatever type of interface is getting bonded, such as an Ethernet interface. The only difference is that the DEVICE directive is bondN, replacing N with the number for the interface.
A continuación se muestra un ejemplo de un archivo de configuración de unión de canales:
Ejemplo 7.1. Sample ifcfg-bond0 interface configuration file
DEVICE=bond0
IPADDR=192.168.1.1
NETMASK=255.255.255.0
ONBOOT=yes
BOOTPROTO=none
USERCTL=no
BONDING_OPTS="bonding parameters separated by spaces"

After the channel bonding interface is created, the network interfaces to be bound together must be configured by adding the MASTER and SLAVE directives to their configuration files. The configuration files for each of the channel-bonded interfaces can be nearly identical.
For example, if two Ethernet interfaces are being channel bonded, both eth0 and eth1 may look like the following example:
DEVICE=ethN
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no
En este ejemplo, reemplace N con un valor numérico para la interfaz.
For a channel bonding interface to be valid, the kernel module must be loaded. To ensure that the module is loaded when the channel bonding interface is brought up, create a new file as root named bonding.conf in the /etc/modprobe.d/ directory. Note that you can name this file anything you like as long as it ends with a .conf extension. Insert the following line in this new file:
alias bondN bonding
Replace N with the interface number, such as 0. For each configured channel bonding interface, there must be a corresponding entry in your new /etc/modprobe.d/bonding.conf file.

Put all bonding module parameters in ifcfg-bondN files

Parameters for the bonding kernel module must be specified as a space-separated list in the BONDING_OPTS="bonding parameters" directive in the ifcfg-bondN interface file. Do not specify options for the bonding device in /etc/modprobe.d/bonding.conf, or in the deprecated /etc/modprobe.conf file. For further instructions and advice on configuring the bonding module and to view the list of bonding parameters, refer to Sección 22.7.2, “Using Channel Bonding”.

7.2.3. Network Bridge

A network bridge is a Link Layer device which forwards traffic between networks based on MAC addresses and is therefore also referred to as a Layer 2 device. It makes forwarding decisions based on tables of MAC addresses which it builds by learning what hosts are connected to each network. A software bridge can be used within a Linux host in order to emulate a hardware bridge, for example in virtualization applications for sharing a NIC with one or more virtual NICs. This case will be illustrated here as an example.
To create a network bridge, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-brN, replacing N with the number for the interface, such as 0.
The contents of the file is similar to whatever type of interface is getting bridged to, such as an Ethernet interface. The differences in this example are as follows:
  • The DEVICE directive is given an interface name as its argument in the format brN, where N is replaced with the number of the interface.
  • The TYPE directive is given an argument Bridge or Ethernet. This directive determines the device type and the argument is case sensitive.
  • The bridge interface configuration file now has the IP address and the physical interface has only a MAC address.
  • An extra directive, DELAY=0, is added to prevent the bridge from waiting while it monitors traffic, learns where hosts are located, and builds a table of MAC addresses on which to base its filtering decisions. The default delay of 30 seconds is not needed if no routing loops are possible.
  • The NM_CONTROLLED=no should be added to the Ethernet interface to prevent NetworkManager from altering the file. It can also be added to the bridge configuration file in case future versions of NetworkManager support bridge configuration.
The following is a sample bridge interface configuration file using a static IP address:
Ejemplo 7.2. Sample ifcfg-br0 interface configuration file
DEVICE=br0
TYPE=Bridge
IPADDR=192.168.1.1
NETMASK=255.255.255.0
ONBOOT=yes
BOOTPROTO=static
NM_CONTROLLED=no
DELAY=0

To complete the bridge another interface is created, or an existing interface is modified, and pointed to the bridge interface. The following is a sample Ethernet interface configuration file pointing to a bridge interface. Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-ethX, where X is a unique number corresponding to a specific interface, as follows:
Ejemplo 7.3. Sample ifcfg-ethX interface configuration file
DEVICE=ethX
TYPE=Ethernet
HWADDR=AA:BB:CC:DD:EE:FF
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br0

Note

For the DEVICE directive, almost any interface name could be used as it does not determine the device type. Other commonly used names include tap, dummy and bond for example. TYPE=Ethernet is not strictly required. If the TYPE directive is not set, the device is treated as an Ethernet device (unless it's name explicitly matches a different interface configuration file.)
You can refer to Sección 7.2, “Archivos de configuración de interfaz” for a review of the directives and options used in network interface config files.

Warning

If you are configuring bridging on a remote host, and you are connected to that host over the physical NIC you are configuring, please consider the implications of losing connectivity before proceeding. You will lose connectivity when restarting the service and may not be able to regain connectivity if any errors have been made. Console, or out-of-band access is advised.
Restart the networking service, in order for the changes to take effect by running as root:
 systemctl restart network.service 
An example of a network bridge formed from two or more bonded Ethernet interfaces will now be given as this is another common application in a virtualization environment. If you are not very familiar with the configuration files for bonded interfaces then please refer to Sección 7.2.2, “Interfaces de unión de canales”
Create or edit two or more Ethernet interface configuration files, which are to be bonded, as follows:
DEVICE=ethX
TYPE=Ethernet
USERCTL=no
SLAVE=yes
MASTER=bond0
BOOTPROTO=none
HWADDR=AA:BB:CC:DD:EE:FF
NM_CONTROLLED=no

Note

Using ethX as the interface name is common practice but almost any name could be used. Names such as tap, dummy and bond are commonly used.
Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-bond0, as follows:
DEVICE=bond0
ONBOOT=yes
BONDING_OPTS='mode=1 miimon=100'
BRIDGE=brbond0
NM_CONTROLLED=no
For further instructions and advice on configuring the bonding module and to view the list of bonding parameters, refer to Sección 22.7.2, “Using Channel Bonding”.
Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-brbond0, as follows:
DEVICE=brbond0
ONBOOT=yes
TYPE=Bridge
IPADDR=192.168.1.1
NETMASK=255.255.255.0
NM_CONTROLLED=no
A network bridge consisting of two bonded Ethernet interfaces.
A diagram of two Ethernet interfaces on the left feeding into a virtual interface labeled bond 0. This in turn leads to a virtual interface called BR Bond 0 on the right. From there a path leads to a virtual network below.
Figura 7.1. A network bridge consisting of two bonded Ethernet interfaces.

We now have two or more interface configuration files with the MASTER=bond0 directive. These point to the configuration file named /etc/sysconfig/network-scripts/ifcfg-bond0, which contains the DEVICE=bond0 directive. This ifcfg-bond0 in turn points to the /etc/sysconfig/network-scripts/ifcfg-brbond0 configuration file, which contains the IP address, and acts as an interface to the virtual networks inside the host.
Restart the networking service, in order for the changes to take effect by running as root:
 systemctl restart network.service 

7.2.4. Setting up 802.1q VLAN tagging

  1. Ensure that the module is loaded by entering the following command:
     lsmod | grep 8021q
  2. If the module is not loaded, load it with the following command:
    modprobe 8021q
  3. Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-ethX, where X is a unique number corresponding to a specific interface, as follows:
    DEVICE=ethX
    TYPE=Ethernet
    BOOTPROTO=none
    ONBOOT=yes
  4. Configure the VLAN interface configuration in /etc/sysconfig/network-scripts. The configuration filename should be the physical interface plus a . character plus the VLAN ID number. For example, if the VLAN ID is 192, and the physical interface is eth0, then the configuration filename should be ifcfg-eth0.192:
    DEVICE=ethX.192
    BOOTPROTO=static
    ONBOOT=yes
    IPADDR=192.168.1.1
    NETMASK=255.255.255.0
    USERCTL=no
    NETWORK=192.168.1.0
    VLAN=yes
    If there is a need to configure a second VLAN, with for example, VLAN ID 193, on the same interface, eth0 , add a new file with the name eth0.193 with the VLAN configuration details.
  5. Restart the networking service, in order for the changes to take effect by running as root:
     systemctl restart network.service 

7.2.5. Archivos alias y clon

Two lesser-used types of interface configuration files are alias and clone files. As the ip command of the iproute package now supports assigning multiple address to the same interface it is no longer necessary to use this method of binding multiple addresses to the same interface.

Note

At the time of writing, NetworkManager does not detect IP aliases in ifcfg files. For example, if ifcfg-eth0 and ifcfg-eth0:1 files are present, NetworkManager creates two connections, which will cause confusion.
For new installations, users should select the Manual method on the IPv4 or IPv6 tab in NetworkManager to assign multiple IP address to the same interface. For more information on using this tool, refer to Capítulo 6, NetworkManager.
Alias interface configuration files, which are used to bind multiple addresses to a single interface, use the ifcfg-if-name:alias-value naming scheme.
For example, an ifcfg-eth0:0 file could be configured to specify DEVICE=eth0:0 and a static IP address of 10.0.0.2, serving as an alias of an Ethernet interface already configured to receive its IP information via DHCP in ifcfg-eth0. Under this configuration, eth0 is bound to a dynamic IP address, but the same physical network card can receive requests via the fixed, 10.0.0.2 IP address.

Warning

Los alias de interfaces no soportan DHCP.
A clone interface configuration file should use the following naming convention: ifcfg-if-name-clone-name. While an alias file allows multiple addresses for an existing interface, a clone file is used to specify additional options for an interface. For example, a standard DHCP Ethernet interface called eth0, may look similar to this:
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
Since the default value for the USERCTL directive is no if it is not specified, users cannot bring this interface up and down. To give users the ability to control the interface, create a clone by copying ifcfg-eth0 to ifcfg-eth0-user and add the following line to ifcfg-eth0-user:
USERCTL=yes
This way a user can bring up the eth0 interface using the /sbin/ifup eth0-user command because the configuration options from ifcfg-eth0 and ifcfg-eth0-user are combined. While this is a very basic example, this method can be used with a variety of options and interfaces.
It is no longer possible to create alias and clone interface configuration files using a graphical tool. However, as explained at the beginning of this section, it is no longer necessary to use this method as it is now possible to directly assign multiple IP address to the same interface. For new installations, users should select the Manual method on the IPv4 or IPv6 tab in NetworkManager to assign multiple IP address to the same interface. For more information on using this tool, refer to Capítulo 6, NetworkManager.

7.2.6. Interfaces de acceso telefónico

Si se conecta a una red, como Internet, a través de la conexión de acceso telefónico, necesitará un archivo de configuración para la interfaz.
Los archivos de interfaz PPP son nombrados utilizando el siguiente formato:
ifcfg-pppX
donde X es un número único correspondiente a la interfaz específica.
El archivo de configuración de interfaz PPP es creado automáticamente cuando wvdial, Configuración de red o Kppp son usados para crear una cuenta de marcado. También es posible crearlo o editarlo manualmente.
El siguiente es un archivo ifcfg-ppp0 típico:
DEVICE=ppp0
NAME=test
WVDIALSECT=test
MODEMPORT=/dev/modem
LINESPEED=115200
PAPNAME=test
USERCTL=true
ONBOOT=no
PERSIST=no
DEFROUTE=yes
PEERDNS=yes
DEMAND=no
IDLETIMEOUT=600
Serial Line Internet Protocol (SLIP) is another dialup interface, although it is used less frequently. SLIP files have interface configuration file names such as ifcfg-sl0.
Otras opciones que se pueden utilizar en estos archivos incluyen:
DEFROUTE=answer
donde answer es una de las siguientes:
  • yes — Set this interface as the default route.
  • no — Do not set this interface as the default route.
DEMAND=answer
donde answer es una de las siguientes:
  • yes — This interface allows pppd to initiate a connection when someone attempts to use it.
  • no — A connection must be manually established for this interface.
IDLETIMEOUT=value
where value is the number of seconds of idle activity before the interface disconnects itself.
INITSTRING=string
where string is the initialization string passed to the modem device. This option is primarily used in conjunction with SLIP interfaces.
LINESPEED=value
where value is the baud rate of the device. Possible standard values include 57600, 38400, 19200, and 9600.
MODEMPORT=device
where device is the name of the serial device that is used to establish the connection for the interface.
MTU=value
where value is the Maximum Transfer Unit (MTU) setting for the interface. The MTU refers to the largest number of bytes of data a frame can carry, not counting its header information. In some dialup situations, setting this to a value of 576 results in fewer packets dropped and a slight improvement to the throughput for a connection.
NAME=name
where name is the reference to the title given to a collection of dialup connection configurations.
PAPNAME=name
where name is the username given during the Password Authentication Protocol (PAP) exchange that occurs to allow connections to a remote system.
PERSIST=answer
donde answer es una de las siguientes:
  • yes — This interface should be kept active at all times, even if deactivated after a modem hang up.
  • no — This interface should not be kept active at all times.
REMIP=address
where address is the IP address of the remote system. This is usually left unspecified.
WVDIALSECT=name
where name associates this interface with a dialer configuration in /etc/wvdial.conf. This file contains the phone number to be dialed and other important information for the interface.

7.2.7. Otras interfaces

Los siguientes son otros archivos de configuración de interfaces comunes:
ifcfg-lo
A menudo se usa una interfaz loopback para realizar pruebas y con una variedad de aplicaciones que requieren una dirección IP que apunte al mismo sistema. Todos los datos que se mandan al dispositivo loopback vuelven inmediatamente a la capa de red del host.

No editar manualmente el script ifcfg-lo

El script de interfaz loopback, /etc/sysconfig/network-scripts/ifcfg-lo, nunca debe ser editado manualmente. Hacerlo puede impedir el correcto funcionamiento del sistema.
ifcfg-irlan0
Una interfaz de infrarrojo permite que se transmita información a través de un enlace infrarrojo entre dispositivos, tal como un portátil y una impresora. Esto funciona de forma similar a un dispositivo Ethernet excepto que se da comúnmente en una conexión punto a punto.
ifcfg-plip0
A Parallel Line Interface Protocol (PLIP) connection works much the same way as an Ethernet device, except that it utilizes a parallel port.

7.3. Scripts de control de interfaz

The interface control scripts activate and deactivate system interfaces. There are two primary interface control scripts that call on control scripts located in the /etc/sysconfig/network-scripts/ directory: /sbin/ifdown and /sbin/ifup.
The ifup and ifdown interface scripts are symbolic links to scripts in the /sbin/ directory. When either of these scripts are called, they require the value of the interface to be specified, such as:
ifup eth0

Use los scripts de interfaz ifup e ifdown

The ifup and ifdown interface scripts are the only scripts that the user should use to bring up and take down network interfaces.
Los siguientes scripts son descritos como referencia únicamente.
Two files used to perform a variety of network initialization tasks during the process of bringing up a network interface are /etc/rc.d/init.d/functions and /etc/sysconfig/network-scripts/network-functions. Refer to Sección 7.5, “Archivos de funciones de red” for more information.
After verifying that an interface has been specified and that the user executing the request is allowed to control the interface, the correct script brings the interface up or down. The following are common interface control scripts found within the /etc/sysconfig/network-scripts/ directory:
ifup-aliases
Configura los alias IP desde los archivos de configuración de la interfaz cuando se asocia más de una dirección IP con una interfaz.
ifup-ippp e ifdown-ippp
Activa y desactiva una interfaz ISDN.
ifup-ipv6 e ifdown-ipv6
Se usa para activar y desactivar una interfaz IPv6.
ifup-plip
Activa y desactiva una interfaz PLIP.
ifup-plusb
Activa y desactiva una interfaz USB para conexiones de red.
ifup-post e ifdown-post
Contiene comandos que son ejecutados después de que una interfaz ha sido activada o desactivada.
ifup-ppp e ifdown-ppp
Activa o desactiva una interfaz PPP.
ifup-routes
Añade rutas estáticas para un dispositivo como si se activase su interfaz.
ifdown-sit e ifup-sit
Contiene llamadas de funciones relacionadas con la activación y desactivación de un túnel IPv6 dentro de una conexión IPv4.
ifup-wireless
Activa una interfaz inalámbrica.

¡Sea cuidadoso cuando elimine o modifique scripts de red!

Removing or modifying any scripts in the /etc/sysconfig/network-scripts/ directory can cause interface connections to act irregularly or fail. Only advanced users should modify scripts related to a network interface.
The easiest way to manipulate all network scripts simultaneously is to use the systemctl command on the network service (/etc/rc.d/init.d/network), as illustrated by the following command:
systemctl action network.service
Here, action can be either start, stop, or restart.
Para ver una lista de los dispositivos configurados y las interfaces de red actualmente activas, utilice el comando:
 systemctl status network.service

Nota

The older SysV service commands, such as service network status are considered deprecated but will still work. The SysV services can define their status in an arbitrary fashion so the output of the status command is not considered predictable over time. The SysV commands are retained for compatibility purposes. The /sbin/service utility will call systemctl when necessary.

7.4. Configurando rutas estáticas

Static routes are for traffic that must not, or should not, go through the default route. Use the route command to display the IP routing table. If static routes are required, they can be specified by means of the GATEWAY directive, either globally or in interface-specific configuration files. There is also the GATEWAYDEV directive, which is a global option. If multiple devices specify GATEWAY, and one interface is specified using the GATEWAYDEV directive, that directive will take precedence. This option is not recommend. Specifying an exit interface is optional. It can be useful if you want to force traffic out of a specific interface. For example, in the case of a VPN, you can force traffic to a remote network to pass through a tun0 interface even when the interface is in a different sub-net to the destination network.
Global static route configuration is stored in the /etc/sysconfig/network file. This file specifies routing and host information for all network interfaces. For more information about this file and the directives it accepts, refer to Sección D.1.13, “ /etc/sysconfig/network ”.
Per-interface static route configuration is stored in a /etc/sysconfig/network-scripts/route-interface file. For example, static routes for the eth0 interface would be stored in the /etc/sysconfig/network-scripts/route-eth0 file. The route-interface file has two formats: IP command arguments and network/netmask directives.

IP Command Arguments Format

Defina una puerta de enlace predeterminada en la primera línea. Ésto es requerido sólo si la puerta de enlace predeterminada no es ajustada vía DHCP:
default via X.X.X.X dev interface
X.X.X.X is the IP address of the default gateway. The interface is the interface that is connected to, or can reach, the default gateway. The dev option can be omitted.
Defina una ruta estática. Cada línea es analizada como una ruta individual:
X.X.X.X/X via X.X.X.X dev interface
X.X.X.X/X is the network number and netmask for the static route. X.X.X.X and interface are the IP address and interface for the default gateway respectively. The X.X.X.X address does not have to be the default gateway IP address. In most cases, X.X.X.X will be an IP address in a different subnet, and interface will be the interface that is connected to, or can reach, that subnet. Add as many static routes as required.
The following is a sample route-eth0 file using the IP command arguments format. The default gateway is 192.168.0.1, interface eth0. The two static routes are for the 10.10.10.0/24 and 172.16.1.0/24 networks:
default via 192.168.0.1 dev eth0
10.10.10.0/24 via 192.168.0.1 dev eth0
172.16.1.0/24 via 192.168.0.1 dev eth0
Static routes should only be configured for other subnets. The above example is not necessary, since packets going to the 10.10.10.0/24 and 172.16.1.0/24 networks will use the default gateway anyway. Below is an example of setting static routes to a different subnet, on a machine in a 192.168.0.0/24 subnet. The example machine has an eth0 interface in the 192.168.0.0/24 subnet, and an eth1 interface (10.10.10.1) in the 10.10.10.0/24 subnet:
10.10.10.0/24 via 10.10.10.1 dev eth1

Duplicar puerta de enlace predeterminada

If the default gateway is already assigned from DHCP, the IP command arguments format can cause one of two errors during start-up, or when bringing up an interface from the down state using the ifup command: "RTNETLINK answers: File exists" or 'Error: either "to" is a duplicate, or "X.X.X.X" is a garbage.', where X.X.X.X is the gateway, or a different IP address. These errors can also occur if you have another route to another network using the default gateway. Both of these errors are safe to ignore.

Network/Netmask Directives Format

You can also use the network/netmask directives format for route-interface files. The following is a template for the network/netmask format, with instructions following afterwards:
 ADDRESS0=X.X.X.X NETMASK0=X.X.X.X GATEWAY0=X.X.X.X 
  • ADDRESS0=X.X.X.X is the network number for the static route.
  • NETMASK0=X.X.X.X is the netmask for the network number defined with ADDRESS0=X.X.X.X.
  • GATEWAY0=X.X.X.X is the default gateway, or an IP address that can be used to reach ADDRESS0=X.X.X.X
The following is a sample route-eth0 file using the network/netmask directives format. The default gateway is 192.168.0.1, interface eth0. The two static routes are for the 10.10.10.0/24 and 172.16.1.0/24 networks. However, as mentioned before, this example is not necessary as the 10.10.10.0/24 and 172.16.1.0/24 networks would use the default gateway anyway:
ADDRESS0=10.10.10.0
NETMASK0=255.255.255.0
GATEWAY0=192.168.0.1
ADDRESS1=172.16.1.0
NETMASK1=255.255.255.0
GATEWAY1=192.168.0.1
Subsequent static routes must be numbered sequentially, and must not skip any values. For example, ADDRESS0, ADDRESS1, ADDRESS2, and so on.
Below is an example of setting static routes to a different subnet, on a machine in the 192.168.0.0/24 subnet. The example machine has an eth0 interface in the 192.168.0.0/24 subnet, and an eth1 interface (10.10.10.1) in the 10.10.10.0/24 subnet:
ADDRESS0=10.10.10.0
NETMASK0=255.255.255.0
GATEWAY0=10.10.10.1
Note that if DHCP is used, it can assign these settings automatically.

7.5. Archivos de funciones de red

Fedora makes use of several files that contain important common functions used to bring interfaces up and down. Rather than forcing each interface control file to contain these functions, they are grouped together in a few files that are called upon when necessary.
The /etc/sysconfig/network-scripts/network-functions file contains the most commonly used IPv4 functions, which are useful to many interface control scripts. These functions include contacting running programs that have requested information about changes in the status of an interface, setting hostnames, finding a gateway device, verifying whether or not a particular device is down, and adding a default route.
As the functions required for IPv6 interfaces are different from IPv4 interfaces, a /etc/sysconfig/network-scripts/network-functions-ipv6 file exists specifically to hold this information. The functions in this file configure and delete static IPv6 routes, create and remove tunnels, add and remove IPv6 addresses to an interface, and test for the existence of an IPv6 address on an interface.

7.6. Recursos adicionales

Los siguientes son recursos que explican más detalladamente las interfaces de red.

7.6.1. Documentación instalada

/usr/share/doc/initscripts-version/sysconfig.txt
Un manual que estudia las opciones disponibles para los archivos de configuración de red, incluidas las opciones IPv6 que no son cubiertas en este capítulo.
/usr/share/doc/iproute-version/ip-cref.ps
This file contains a wealth of information about the ip command, which can be used to manipulate routing tables, among other things. Use the ggv or kghostview application to view this file.

Parte IV. Servicios de infraestructura

Este apartado proporciona información sobre cómo configurar servicios y demonios, configurar la autenticación y habilitar el inicio de sesión remoto

Capítulo 8. Services and Daemons

Maintaining security on your system is extremely important, and one approach for this task is to manage access to system services carefully. Your system may need to provide open access to particular services (for example, httpd if you are running a web server). However, if you do not need to provide a service, you should turn it off to minimize your exposure to possible bug exploits.
This chapter covers the configuration of the services to be run when a system is started, and provides information on how to start, stop, and restart the services on the command line using the systemctl utility.

Keep the system secure

When you allow access for new services, always remember that both the firewall and SELinux need to be configured as well. One of the most common mistakes committed when configuring a new service is neglecting to implement the necessary firewall configuration and SELinux policies to allow access for it. For more information, refer to the Fedora 17 Security Guide.

8.1. Configuring Services

To allow you to configure which services are started at boot time, Fedora is shipped with the systemctl command line tool.

Do not use the ntsysv and chkconfig utilities

Although it is still possible to use the ntsysv and chkconfig utilities to manage services that have init scripts installed in the /etc/rc.d/init.d/ directory, it is advised that you use the systemctl utility.

Enabling the irqbalance service

To ensure optimal performance on POWER architecture, it is recommended that the irqbalance service is enabled. In most cases, this service is installed and configured to run during the Fedora 17 installation. To verify that irqbalance is running, type the following at a shell prompt:
systemctl status irqbalance.service

8.1.1. Enabling the Service

To configure a service to be automatically started at boot time, use the systemctl command in the following form:
systemctl enable service_name.service
The service will be started the next time you boot the system. For information on how to start the service immediately, refer to Sección 8.2.2, “Running the Service”.
Ejemplo 8.1. Enabling the httpd service
Imagine you want to run the Apache HTTP Server on your system. Provided that you have the httpd package installed, you can enable the httpd service by typing the following at a shell prompt as root:
~]# systemctl enable httpd.service

8.1.2. Disabling the Service

To disable starting a service at boot time, use the systemctl command in the following form:
systemctl disable service_name.service
The next time you boot the system, the service will not be started. For information on how to stop the service immediately, refer to Sección 8.2.3, “Stopping the Service”.
Ejemplo 8.2. Disabling the telnet service
In order to secure the system, users are advised to disable insecure connection protocols such as Telnet. You can make sure that the telnet service is disabled by running the following command as root:
~]# systemctl disable telnet.service

8.2. Running Services

The systemctl utility also allows you to determine the status of a particular service, as well as to start, stop, or restart a service.

Do not use the service utility

Although it is still possible to use the service utility to manage services that have init scripts installed in the /etc/rc.d/init.d/ directory, it is advised that you use the systemctl utility.

8.2.1. Checking the Service Status

To determine the status of a particular service, use the systemctl command in the following form:
systemctl status service_name.service
This command provides detailed information on the service's status. However, if you merely need to verify that a service is running, you can use the systemctl command in the following form instead:
systemctl is-active service_name.service
Ejemplo 8.3. Checking the status of the httpd service
Ejemplo 8.1, “Enabling the httpd service” illustrated how to enable starting the httpd service at boot time. Imagine that the system has been restarted and you need to verify that the service is really running. You can do so by typing the following at a shell prompt:
~]$ systemctl is-active httpd.service
active
You can also display detailed information about the service by running the following command:
~]$ systemctl status httpd.service
httpd.service - LSB: start and stop Apache HTTP Server
          Loaded: loaded (/etc/rc.d/init.d/httpd)
          Active: active (running) since Mon, 23 May 2011 21:38:57 +0200; 27s ago
         Process: 2997 ExecStart=/etc/rc.d/init.d/httpd start (code=exited, status=0/SUCCESS)
        Main PID: 3002 (httpd)
          CGroup: name=systemd:/system/httpd.service
                  ├ 3002 /usr/sbin/httpd
                  ├ 3004 /usr/sbin/httpd
                  ├ 3005 /usr/sbin/httpd
                  ├ 3006 /usr/sbin/httpd
                  ├ 3007 /usr/sbin/httpd
                  ├ 3008 /usr/sbin/httpd
                  ├ 3009 /usr/sbin/httpd
                  ├ 3010 /usr/sbin/httpd
                  └ 3011 /usr/sbin/httpd

To display a list of all active system services, use the following command:
systemctl list-units --type=service
This command provides a tabular output with each line consisting of the following columns:
  • UNIT — A systemd unit name. In this case, a service name.
  • LOAD — Information whether the systemd unit was properly loaded.
  • ACTIVE — A high-level unit activation state.
  • SUB — A low-level unit activation state.
  • JOB — A pending job for the unit.
  • DESCRIPTION — A brief description of the unit.
Ejemplo 8.4. Listing all active services
You can list all active services by using the following command:
~]$ systemctl list-units --type=service
UNIT                      LOAD   ACTIVE SUB     JOB DESCRIPTION
abrt-ccpp.service         loaded active exited      LSB: Installs coredump handler which saves segfault data
abrt-oops.service         loaded active running     LSB: Watches system log for oops messages, creates ABRT dump directories for each oops
abrtd.service             loaded active running     ABRT Automated Bug Reporting Tool
accounts-daemon.service   loaded active running     Accounts Service
atd.service               loaded active running     Job spooling tools
[output truncated]
In the example above, the abrtd service is loaded, active, and running, and it does not have any pending jobs.

8.2.2. Running the Service

To run a service, use the systemctl command in the following form:
systemctl start service_name.service
This will start the service in the current session. To configure the service to be started at boot time, refer to Sección 8.1.1, “Enabling the Service”.
Ejemplo 8.5. Running the httpd service
Ejemplo 8.1, “Enabling the httpd service” illustrated how to run the httpd service at boot time. You can start the service immediately by typing the following at a shell prompt as root:
~]# systemctl start httpd.service

8.2.3. Stopping the Service

To stop a service, use the systemctl command in the following form:
systemctl stop service_name.service
This will stop the service in the current session. To disable starting the service at boot time, refer to Sección 8.1.1, “Enabling the Service”.
Ejemplo 8.6. Stopping the telnet service
Ejemplo 8.2, “Disabling the telnet service” illustrated how to disable starting the telnet service at boot time. You can stop the service immediately by running the following command as root:
~]# systemctl stop telnet.service

8.2.4. Restarting the Service

To restart a service, use the systemctl command in the following form:
systemctl restart service_name.service
Ejemplo 8.7. Restarting the sshd service
For any changes in the /etc/ssh/sshd_config configuration file to take effect, it is required that you restart the sshd service. You can do so by typing the following at a shell prompt as root:
~]# systemctl restart httpd.service

8.3. Recursos adicionales

8.3.1. Documentación instalada

  • systemctl(1) — The manual page for the systemctl utility.

8.3.2. Libros relacionados

Fedora 17 Security Guide
A guide to securing Fedora. It contains valuable information on how to set up the firewall, as well as the configuration of SELinux.

Capítulo 9. Configuring Authentication

9.1. La herramienta de configuración de autenticación

When a user logs in to a Fedora system, the username and password combination must be verified, or authenticated, as a valid and active user. Sometimes the information to verify the user is located on the local system, and other times the system defers the authentication to a user database on a remote system.
The Authentication Configuration Tool provides a graphical interface for configuring user information retrieval from Lightweight Directory Access Protocol (LDAP), Network Information Service (NIS), and Winbind user account databases. This tool also allows you to configure Kerberos to be used as the authentication protocol when using LDAP or NIS.

Using a high or medium security level

If you configured a medium or high security level during installation (or with the Security Level Configuration Tool), then the firewall will prevent NIS authentication. For more information about firewalls, refer to the "Firewalls" section of the Fedora 17 Security Guide.
To start the graphical version of the Authentication Configuration tool from the desktop, select ApplicationsOtherAuthentication form the Activities menu or type the command system-config-authentication at a shell prompt (for example, in an XTerm or a GNOME terminal).

Your changes are immediately applied

After exiting the authentication program, any changes you made take effect immediately.

9.1.1. Identidad y autenticación

The Identity & Authentication tab allows you to configure how users should be authenticated, and has several options for each method of authentication. To select which user account database should be used, select an option from the drop-down list.
Identity & Authentication; changing the option in the User Account Database drop-down list changes the contents of the tab
Figura 9.1. Identity & Authentication; changing the option in the User Account Database drop-down list changes the contents of the tab

La lista siguiente explica lo que configura cada una de las opciones:

LDAP

The LDAP option instructs the system to retrieve user information via LDAP. It contains the following specifications:
  • LDAP Search Base DN — Specifies that user information should be retrieved using the listed Distinguished Name (DN).
  • LDAP Server — Specifies the address of the LDAP server.
  • Use TLS to encrypt connections — When enabled, Transport Layer Security (TLC) will be used to encrypt passwords sent to the LDAP server. The Download CA Certificate option allows you to specify a URL from which to download a valid Certificate Authority certificate (CA). A valid CA certificate must be in the Privacy Enhanced Mail (PEM) format.

    Using ldaps:// in the LDAP Server field

    The Use TLS to encrypt connections option must not be ticked if an ldaps:// server address is specified in the LDAP Server field.
    For more information about CA Certificates, refer to Sección 13.1.8.1, “An Overview of Certificates and Security”.
The openldap-clients package must be installed for this option to work.
For more information about LDAP, refer to Sección 15.1, “OpenLDAP”.
LDAP provides the following methods of authentication:
  • Kerberos password — This option enables Kerberos authentication. It contains the following specifications:
    • Realm — Configures the realm for the Kerberos server. The realm is the network that uses Kerberos, composed of one or more KDCs and a potentially large number of clients.
    • KDCs — Defines the Key Distribution Centers (KDC), which are servers that issue Kerberos tickets.
    • Admin Servers — Specifies the administration server(s) running kadmind.
    The Kerberos Settings dialog also allows you to use DNS to resolve hosts to realms and locate KDCs for realms.
    The krb5-libs and krb5-workstation packages must be installed for this option to work. For more information about Kerberos, refer to section Using Kerberos of the Fedora 17 Managing Single Sign-On and Smart Cards guide.
  • LDAP password — This option instructs standard PAM-enabled applications to use LDAP authentication with options specified in the User Account Configuration of LDAP. When using this option, you must provide an ldaps:// server address or use TLS for LDAP authentication.

Setting up the SSSD service

The SSSD service is used as a client for LDAP and Kerberos servers. Thus, offline login is enabled and supported by default. No user interaction is needed to set up the SSSD service with the Authentication Configuration Tool. For more information about the SSSD service, refer to Sección 9.2, “El Daemon de Servicios de Seguridad del Sistema (SSSD)”

NIS

The NIS option configures the system to connect to a NIS server (as an NIS client) for user and password authentication. To configure this option, specify the NIS domain and NIS server. If the NIS server is not specified, the daemon attempts to find it via broadcast.
The ypbind package must be installed for this option to work. If the NIS user account database is used, the portmap and ypbind services are started and are also enabled to start at boot time.
For more information about NIS, refer to section "Securing NIS" of the Fedora 17 Security Guide.
NIS provides the following methods of authentication:
  • Kerberos password — This option enables Kerberos authentication. For more information about configuration of the Kerberos authentication method, refer to the previous section on LDAP.
  • NIS password — This option enables NIS authentication. NIS can provide authentication information to outside processes to authenticate users.

Winbind

The Winbind option configures the system to connect to a Windows Active Directory or a Windows domain controller. User information from the specified directory or domain controller can then be accessed, and server authentication options can be configured. It contains the following specifications:
  • Winbind Domain — Specifies the Windows Active Directory or domain controller to connect to.
  • Security Model — Allows you to select a security model, which configures the Samba client mode of operation. The drop-down list allows you to select any of the following:
    • ads — This mode instructs Samba to act as a domain member in an Active Directory Server (ADS) realm. To operate in this mode, the krb5-server package must be installed, and Kerberos must be configured properly.
    • domain — In this mode, Samba will attempt to validate the username/password by authenticating it through a Windows NT Primary or Backup Domain Controller, similar to how a Windows NT Server would.
    • server — In this mode, Samba will attempt to validate the username/password by authenticating it through another SMB server (for example, a Windows NT Server). If the attempt fails, the user mode will take effect instead.
    • user — This is the default mode. With this level of security, a client must first log in with a valid username and password. Encrypted passwords can also be used in this security mode.
  • Winbind ADS Realm — When the ads Security Model is selected, this allows you to specify the ADS Realm the Samba server should act as a domain member of.
  • Winbind Domain Controllers — Use this option to specify which domain controller winbind should use. For more information about domain controllers, please refer to Sección 16.1.6.3, “Domain Controller”.
  • Template Shell — When filling out the user information for a Windows NT user, the winbindd daemon uses the value chosen here to specify the login shell for that user.
  • Allow offline login — By checking this option, you allow authentication information to be stored in a local cache (provided by SSSD). This information is then used when a user attempts to authenticate while offline.
For more information about the winbindd service, refer to Sección 16.1.2, “Demonios Samba y Servicios relacionados”.
Winbind provides only one method of authentication, Winbind password. This method of authentication uses the options specified in the User Account Configuration of Winbind to connect to a Windows Active Directory or a Windows domain controller.

9.1.2. Opciones avanzadas

This tab allows you to configure advanced options, as listed below.
Opciones avanzadas
Figura 9.2. Opciones avanzadas

Opciones de autenticación local

  • Enable fingerprint reader support — By checking this option, you enable fingerprint authentication to log in by scanning your finger with the fingerprint reader.
  • Enable local access control — When enabled, /etc/security/access.conf is consulted for authorization of a user.
  • Password Hashing Algorithm — This option lets you specify which hashing or cryptographic algorithm should be used to encrypt locally stored passwords.

Otras opciones de autenticación

Create home directories on the first login — When enabled, the user's home directory is automatically created when they log in if it does not already exist.

Smart Card Authentication Options

Enable smart card support — This option enables smart card authentication. Smart card authentication allows you to log in using a certificate and a key associated with a smart card.
When the Enable smart card support option is checked, the following options can be specified:
  • Card Removal Action — This option defines what action the system performs when the card is removed from the card reader during an active session. Two alternatives are available:
    • Ignore — The card removal is ignored and the system continues to function as normal.
    • Lock — The current session is immediately locked.
  • Require smart card login — Requires the user to login and authenticate with a smart card. It essentially disables any other type of password authentication. This option should not be selected until after you have successfully logged in using a smart card.
The pam_pkcs11 and the coolkey packages must be installed for this option to work. For more information about smart cards, refer to the Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards Guide.

Click Revert to restore the previous configuration

You can restore all of the options specified in the Authentication Configuration Tool to the previous configuration setup by clicking Revert.

9.1.3. Versión de línea de comandos

The Authentication Configuration tool also supports a command line interface. The command line version can be used in a configuration script or a kickstart script. The authentication options are summarized in Tabla 9.1, “Command line options”.

Getting the list of supported authentication options

These options can also be found in the authconfig man page or by typing authconfig --help at the shell prompt.
Tabla 9.1. Command line options
Opciones Descripción
--enableshadow, --useshadow Habilitar contraseñas shadow
--disableshadow Desactivar contraseñas shadow
--passalgo=descrypt|bigcrypt|md5|sha256|sha512 Hash/crypt algorithm to be used
--enablenis Enable NIS for user account configuration
--disablenis Disable NIS for user account configuration
--nisdomain=domain Especificar un dominio NIS
--nisserver=server Especificar un servidor NIS
--enableldap Habilitar LDAP para configuración de cuentas de usuario
--disableldap Deshabilitar LDAP para configuración de cuentas de usuario
--enableldaptls Habilitar el uso de TLS con LDAP
--disableldaptls Inhabilitar el uso de TLS con LDAP
--enablerfc2307bis Enable use of RFC-2307bis schema for LDAP user information lookups
--disablerfc2307bis Disable use of RFC-2307bis schema for LDAP user information lookups
--enableldapauth Habilitar LDAP para la autenticación
--disableldapauth Inhabilitar LDAP para la autenticación
--ldapserver=server Especificar un servidor LDAP
--ldapbasedn=dn Specify an LDAP base DN (Distinguished Name)
--ldaploadcacert=URL Load a CA certificate from the specified URL
--enablekrb5 Habilitar Kerberos para autenticación
--disablekrb5 Deshabilitar Kerberos para autenticación
--krb5kdc=server Especificar un servidor Kerberos KDC
--krb5adminserver=server Especifica un servidor de administración Kerberos
--krb5realm=realm Especifica el entorno Kerberos
--enablekrb5kdcdns Habilitar el uso de DNS para encontrar Kerberos KDCs
--disablekrb5kdcdns Deshabilitar el uso de DNS para encontrar Kerberos KDCs
--enablekrb5realmdns Habilitar el uso de DNS para encontrar Kerberos realms
--disablekrb5realmdns Deshabilitar el uso de DNS para encontrar Kerberos realms
--enablewinbind Habilitar winbind para configuración de cuentas de usuario
--disablewinbind Deshabilitar winbind para configuración de cuentas de usuario
--enablewinbindauth Habilitar winbindauth para autenticación
--disablewinbindauth Deshabilitar winbindauth para autenticación
--winbindseparator=\ Character used to separate the domain and user part of winbind usernames if winbindusedefaultdomain is not enabled
--winbindtemplatehomedir=/home/%D/%U Directorio de inicio de los usuarios winbind
--winbindtemplateprimarygroup=nobody Grupo primario de los usuarios winbind
--winbindtemplateshell=/bin/false Shell por defecto de los usuarios winbind
--enablewinbindusedefaultdomain Configurar winbind para asumir que los usuarios sin dominio en sus nombres de usuarios son usuarios con dominio
--disablewinbindusedefaultdomain Configurar winbind para asumir que los usuarios sin dominio en sus nombres de usuarios son usuarios sin dominio
--winbindjoin=Administrator Joins the winbind domain or ADS realm as the specified administrator
--enablewinbindoffline Configures winbind to allow offline login
--disablewinbindoffline Configures winbind to prevent offline login
--smbsecurity=user|server|domain|ads Security mode to use for the Samba and Winbind services
--smbrealm=realm Default realm for Samba and Winbind services when security is set to ads
--enablewins Enable Wins for hostname resolution
--disablewins Disable Wins for hostname resolution
--enablesssd Enable SSSD for user information
--disablesssd Disable SSSD for user information
--enablecache Habilitar nscd
--disablecache Deshabilitar nscd
--enablelocauthorize Local authorization is sufficient for local users
--disablelocauthorize Local users are also authorized through a remote service
--enablesysnetauth Authenticate system accounts with network services
--disablesysnetauth Authenticate system accounts with local files only
--enablepamaccess Check /etc/security/access.conf during account authorization
--disablepamaccess Do not check /etc/security/access.conf during account authorization
--enablemkhomedir Create a home directory for a user on the first login
--disablemkhomedir Do not create a home directory for a user on the first login
--enablesmartcard Enable authentication with a smart card
--disablesmartcard Disable authentication with a smart card
--enablerequiresmartcard Require smart card for authentication
--disablerequiresmartcard Do not require smart card for authentication
--smartcardmodule=module Default smart card module to use
--smartcardaction=0=Lock|1=Ignore Action to be taken when smart card removal is detected
--enablefingerprint Enable fingerprint authentication
--disablefingerprint Disable fingerprint authentication
--nostart Do not start or stop the portmap, ypbind, or nscd services even if they are configured
--test Do not update the configuration files, only print the new settings
--update, --kickstart Opposite of --test, update configuration files with changed settings
--updateall Update all configuration files
--probe Verificar y muestrar las fallas de red
--savebackup=name Save a backup of all configuration files
--restorebackup=name Restore a backup of all configuration files
--restorelastbackup Restore the backup of configuration files saved before the previous configuration change

9.2. El Daemon de Servicios de Seguridad del Sistema (SSSD)

Esta sección provee una introducción al Daemon* de Servicios de Seguridad del Sistema (SSSD) (Daemon es una aplicación que corre en segundo plano)
Esta sección también describe como configurar SSSD, para utilizar las características que provee. Proporciona información en los tipos de servicios que soporta y como configurarlos, así mismo introduce y describe las opciones de configuración más importantes. También se proporcionan muestras de archivos de configuración para ayudarlo a optimizar la instalación de su sistema.

9.2.1. ¿Qué es SSSD?

El Daemon de los Servicios de Seguridad del Sistema (SSSD) es un servicio que proporciona acceso a proveedores distintos de identidad e identificación. Usted puede econfigurar SSSD para que utilice un dominio LDAP (esto es, un proveedor nativo de indentidad LDAP con identificación LDAP), o bien un proveedor de identidad LDAP con identificación kerberos. Proporciona al sistema interfases NSS y PAM asi como un sistema conectable de back-end para conectar fuentes de cuentas distintas.
SSSD es también extensible; usted puede configurarla para que utilice nuevas fuentes de mecanismos de identidad e identificación si estos estuvieran disponibles. Además, SSSD es completamente compatible con IPV6, simepre y cuando sea contruido utilizando c-ares 1.7.1 o superior y krb5-libs 1.8.1 o superior.

9.2.2. Características de SSSD

9.2.2.1. Identificación sin conexión

Uno de los primeros beneficios de SSSD es la identificación sin conexión. Esto resuelve el caso de usuarios que tienen una cuenta corporativa por separado y una cuenta de maquina local debido al requerimiento común de implementar una Red Virtual Privada (VPN).
SSSD puede guardar identidades remotas y credenciales de identificación. Esto quiere decir que usted puede aún identificarse con esas identidades remotas aún cuando una máquina esté sin conexión. En un sistema SSSD, usted solo necesita manejar una cuenta.

9.2.2.2. Reducción de la Carga del Servidor

El uso de SSSD ayuda también a reducir la carga en los servidores de identificación. Por ejemplo, utilizando nss_ldap, cada aplicación cliente que necesita solicitar información abre su propia conexión en el servidor LDAP. El manejo de esas conexiones múltiples puede llevar a un pesada carga en el servidor LDAP. En un sistema SSSD, solo el Proveedor de Datos SSSD se comunica realmente con el servidor LDAP, reduciendo la carga del sistema a una conexión por cliente.

9.2.2.3. Soporte para Dominios Múltiples

Usted puede utilizar SSSD para especificar dominios múltiples del mismo tipo. Compare esto a un archivo de configuración nsswitch.conf, con el cual usted puede pedir solo información de un solo servidor de cualquier tipo (LDAP, NIS, etc.). Con SSSD, usted puede crear dominios múltiples de proveedores de identidad del mismo o diferente tipo.
Comenzando con la version 0.6.0, SSSD mantiene un archivo de base de datos separado por cada dominio. Esto quiere decir que cada dominio tiene su propio archivo de memoria temporal, y en el la eventualidad que ocurra un problema y sea necesario el mantenimiento, es muy fácil borrar el archivo de memoria temporal de un solo dominio, deteniendo sssd y borrando el archivo de memoria temporal correspondiente.
Todos los archivos de memoria temporal (caché) se nombran de acuerdo al dominio que ellos representan, por ejemplo cache_DOMAINNAME.ldb.
Consideraciones Asociadas al Borrado de los Archivos de Memoria Temporal (caché)
Borrar el archivo de memoria temporal de un dominio puede producir algunos efectos secundarios. Usted debe tener precaución de lo siguiente antes de proceder:
  • El borrado del archivo de memoria temporal (caché) borra también todos los datos del usuario (tanto la identificación como las credenciales que se encuentran en ese archivo). Es por eso que usted no debe proceder a menos que usted este conectado y pueda identificarse con su nombre de usuario en esos servidores de dominio, ya que la identificación fuera de conexión fallará.
  • Si usted está conectado y cambia su configuración para que haga referencia a un proveedor de identidad diferente, SSSD reconocerá a los usuarios de ambos proveedores hasta que la información que se encuentra en la memoria temporal (caché) del proveedor original llegue a su termino.
    Para evitar esta situación, usted puede sea borrar el caché o utilizar un nombre de dominio diferente para el nuevo proveedor (esto es lo que se recomienda hacer), El cambiar el nombre de dominio quiere decir que cuando usted reinicia SSSD creara un nuevo archivo caché (con el nuevo nombre) y el viejo archivo caché será ignorado.

9.2.2.4. Soporte para remisiones LDAP

SSSD soporta dos tipos de remisiones: remisiones object-level (a nivel de objeto) y remisiones subtree (bajo el arbol). Esos tipos de remisión y la extensión de soporte de SSSD se describen en seguida.
9.2.2.4.1. Remisiones de nivel objeto (object-level)
SSSD provee soporte completo para las remisiones de nivel objeto dentro del mismo servidor LDAP, manejando correctamente cualquier diferencia en el nombre distinguido (DN) que pueda existir como parte de la configuración de remisión del servidor LDAP.
SSSD provee soporte parcial para las remisiones object-level entre los diferentes servidores LDAP, y requiere que los pedidos completos DN y LDAP sean idénticos en cada servidor. SSSD no soporta remisiones a caminos diferentes DN en otros servidores.
9.2.2.4.2. Remisiones bajo árbol (subtree)
SSSD provee un nivel similar de soporte para remisiones bajo árbol (subtree) como lo hace para las remisiones nivel objeto (object-level). Esto es, soporta remisiones a un DN cambiado en el sistema local o a un DN idéntico en un sistema remoto. Sin embargo La diferencia con las remisiones bajo árbol (subtree), es la abilidad de configurar bajo árbol (subtrees) idénticos en cada servidor LDAP y para entonces configurar las remisiones entre esos bajo árboles (subtrees).
9.2.2.4.3. Activación de remisiones LDAP
Para tomar ventajas de las las funcionalidades de remisión SSSD LDAP, usted necesita configurar la opción ldap_referrals a TRUE en la sección de configuración de dominio LDAP del archivo /etc/sssd/sssd.conf. Esto activara ella acceso anónimo a el segundo servidor LDAP.

Asegurese que SSSD esta compilada con la version OpenLDAP 2.4.13 o superior

SSSD solo soporta remisiones LDAP cuando esta compilada con OpenLDAP 2.4.13 o superior.

9.2.2.5. Diferenciando usuarios con nombres similares (like-named)

SSSD soporta la diferenciación de usuarios (like-named) en diferentes dominios. Por ejemplo, usted puede diferenciar el usuario kate en el dominio ldap.example.com del usuario kate en el dominio ldap.myhome.com. Usted puede utilizar SSSD para hacer solicitudes utilizando nombres de usuario completamente calificados. Si usted solicita información de cualquier para el usuario kate, recibirá la información a partir de cualquier dominio que este de primero en la lista de búsqueda. Sin embargo si usted solicita información para kate@ldap.myhome.com, recibirá la información correcta de ese usuario.
SSSD también provee una opción filter_users, en la cual usted puede excluir ciertos usuarios para que no sean buscados en la base de datos. Para detalles completos acerca de esta opción refiérase al manual sssd.conf(5)

9.2.2.6. Integración con IPA

Mas allá de la identificación fuera de conexión, el manejo múltiple de dominios y otras características que ya se describieron, SSSD esta también designado para integrarse y mejorar la funcionalidad de los clientes IPA instalados, SSSD provee funcionalidades adicionales, incluyendo soporte para actualizaciones dinámicas DNS, control de accesos basados en servidor, y migración de contraseñas a partir de un ambiente que sea solo LDAP dentro del ambiente LDAP/Kerberos 5 ambiente empleado por IPA.
9.2.2.6.1. Soporte para Actualizaciones Dinamicas DNS
Debido a que las direcciones IP de los clientes IPA puede cambiar, SSSD provee la abilidad de actualizar dinamicamente una entrada del cliente DNS en el servidor IPA, Utilizando una combinacin de Kerberos y GSS-TSIG (Servicion de Algoritmo Generico para llave secreta de Transaccion), IPA puede determinar la identidad de la maquina servidor, identificarla, y permite a esa maquina de editar su propio registro DNS. Esos cambios se almacenan entonces en el LDAP back end.

Cada cliente IPA solo puede editar su propio registro DNS

Utilizar este sistema de identificación quiere decir que cada cliente IPA puede editar su propio registro DNA; no puede editar el registro DNS de ningún otro cliente.
Configurando Actualizaciones Dinámicas DNS
El archivo de configuración DNS provee dos opciones que se utilizan para configurar las actualizaciones dinámicas DNS: ipa_dyndns_update, utilizada para activar las actualizaciones dinamicas DNS; y ipa_dyndns_iface, que especifica la interfaz cuya direccion IP debe ser utilizada para las actualizaciones dinámicas DNS,
Para mas información acerca de estas opciones, y como configurar las actualizaciones dinámicas DNS, refiérase a la pagina sssd-ipa

Soporte para actualizaciones dinámicas DNS

El soporte para actualizaciones dinámicas DNS sol esta disponibles en la versión 2 o superior de IPA, y con el DNS configurado correctamente.

9.2.3. Configurando SSSD

Esta sección describe como instalar SSSD, como correr el servicio, y como configurarlo para cada tipo de proveedor de información soportado.

9.2.3.1. Instalando de SSSD

Corra el siguiente comando para instalar SSSD y sus dependencias, incluyendo el cliente SSSD:
# yum install sssd
SSSD requiere muy pocas dependencias y debería instalarse mu rapidamente, dependiendo de la velocidad de su conexión de red
9.2.3.1.1. Actualizando de una Versión anterior
Actualizando con paquetes RPM
Si usted hace la actualización utilizando paquetes RPM, el script se ejecutara automáticamente cuando usted actualice a la nueva versión. Esto actualizara el archivo /etc/sssd/sssd.conf al nuevo formato, y copia la versión existente a /etc/sssd/sssd.conf.bak.
Actualizando Manualmente
Puede ser necesario ejecutar el script de actualización manualmente, ya sea porque usted creo el SSSD a partir de los archivos fuente, o bien porque usted esta utilizando una plataforma que no soporta el uso de paquetes RPM. La sinopsis para el script es como sigue

upgrade_config.py [ -f INFILE ] [ -o OUTFILE ] [ -verbose ] [ --no-backup ]

  • -f INFILE — es el archivo de confguracion a ser actualizado. Si no es especificado, se predefine como /etc/sssd/sssd.conf
  • -o OUTFILE — el nombre del archivo de configuración actualizado. Si no es especificado, se predefine como /etc/sssd/sssd.conf
  • -verbose — produce mas salidas de información durante el proceso de actualización
  • --no-backup — no produce un archivo de respaldo. Si no se especifica se predefine como INFILE.bak
9.2.3.1.2. Iniciando y Deteniendo SSSD

Iniciando SSSD por primera vez

Antes que usted inicie SSSD por la primera vez, puede necesitar configurar al menos un dominio. Para información de como configurar un dominio SSSD referase a Sección 9.2.5, “Configuring Domains”
Usted puede utilizar cualquier comando service o el script /etc/init.d/sssd para controlar SSSD. Por ejemplo, ejecute el siguiente comando para iniciar sssd:
# systemctl start sssd.service
Por predefinicion, SSSD esta configurado para iniciar automaticamente. Hay dos formas para cambiar este comportamiento; si usted utiliza la herramienta de Configuracion de Idenificacion para configurar SSSD, esta reconfigura el comportamiento predefinido asi que SSSD inicia cuando la maquina arranca. Alternativamente, usted puede utilizar el comando systemctl, como sigue:
# systemctl enable sssd.service

9.2.3.2. Configurando SSSD

La configuracion global de SSSD se almacena en el archivo /etc/sssd/sssd.conf, Este archivo consiste de varias secciones, cada una de las cuales contiene unos pares de llave/valor. Algunas llaves aceptan valores multiples; para esas llaves utilice comas para separar los valores multiples. Este archivo de configuracion utiliza tipos de datos string (no requiere comillas), integer and Boolean (con valores TRUE o FALSE). Los comentarios se indican ya sea con un símbolo numeral (#) o punto y coma (;) en la primera columna. El ejemplo siguiente ilustra algo de la sintaxis.
[section]
# Keys with single values
key1 = value
key2 = val2

# Keys with multiple values
key10 = val10,val11

Especificando un archivo de configuración diferente

Usted puede utilizar el parámetro -c (o --config) en el terminal para especificar un archivo de configuración SSSD diferente.
El formato del archivo de configuracion se describe en Sección 9.2.9, “SSSD Configuration File Format”
Para mayor información sobre las opciones globales de configuracion de SSSD refiérase a la pagina sssd.conf(5) del manual.
9.2.3.2.1. Configurando NSS
SSSD provee un nuevo modulo NSS sssd_nss, de tal forma que usted pueda configurar su sistema para utilizar SSSD para recuperar información del usuario. Edite el archivo /etc/nsswitch.conf de sus sistema para que utilice el nombre sss
passwd: files sss
group: files sss
9.2.3.2.2. Configurando PAM

Sea cuidadoso cuando cambie su configuración PAM

Tenga extrema precaución cuando cambie su configuración PAM. Un error en el archivo de configuración PAM puede bloquearlo del sistema completamente. Respalde siempre sus archivos de configuración antes de hacer cualquier cambio, y mantenga la sesión abierta de tal forma que pueda revertir cualquier cambio que usted halla realizado si la necesidad así lo requiere.
Para habilitar el sistema a que utilice SSSD para PAM, usted necesita editar el archivo predefinido de configuración PAM. En sistemas basados en Fedora—, es el archivo /etc/pam.d/system-auth.
#%PAM-1.0
# This file is auto-generated.
# User changes will be destroyed the next time authconfig is run.
auth        required      pam_env.so
auth        sufficient    pam_unix.so nullok try_first_pass
auth        requisite     pam_succeed_if.so uid >= 500 quiet
auth        sufficient    pam_sss.so use_first_pass
auth        required      pam_deny.so

account     required      pam_unix.so broken_shadow
account     sufficient    pam_localuser.so
account     sufficient    pam_succeed_if.so uid < 500 quiet
account [default=bad success=ok user_unknown=ignore] pam_sss.so
account     required      pam_permit.so

password    requisite     pam_cracklib.so try_first_pass retry=3
password    sufficient    pam_unix.so sha512 shadow nullok try_first_pass use_authtok
password    sufficient    pam_sss.so use_authtok
password    required      pam_deny.so

session     required      pam_mkhomedir.so umask=0022 skel=/etc/skel/
session     optional      pam_keyinit.so revoke
session     required      pam_limits.so
session     [success=1 default=ignore] pam_succeed_if.so service in crond quiet use_uid
session     sufficient    pam_sss.so
session     required      pam_unix.so
9.2.3.2.2.1. Utilizando Directorios Home Especiales con SSSD
Si sus usuarios LDAP tienen directorios home que no están en /home, y si sus sistema esta configurado para crear directorios home la primera vez que los usuarios ingresen, entonces esos directorios serán creados con los permisos equivocados. Por ejemplo, en lugar de un directorio home típico tal como /home/<username>, sus usuarios podrian tener directorios home que incluyan lenguaje de preferencia (locale), por ejemplo, tal como /home/<locale>/<username>. Si esto es cierto en su sistema, se necesitan realizar los pasos siguientes (preventivamente)
  1. Aplicar el contexto correcto SELinux y los permisos del directorio /home al directorio home que usted utiliza en su sistema. En el ejemplo anterior, las instrucciones siguientes alcanzarían estos resultados (el remplazo de los nombres de directorios con los que se aplican a su sistema)
    # semanage fcontext -a -e /home /home/locale
  2. Asegurese que el paquete oddjob-mkhomedir esta instalado en su sistema y vuelva a correr la herramienta de Configuración de Identificación
    Este paquete provee la biblioteca pam_oddjob_mkhomedir.so, la cual sera utilizada por la herramienta de configuración de identificación para crear sus directorios home personalizados. Usted necesita esta biblioteca para crear sus directorios home, y no la biblioteca predeterminada pam_mkhomedir.so porque esta ultima no puede crear etiquetas SELinux.

    Las bibliotecas pam_oddjob_mkhomedir and pam_mkhomedir

    La herramienta de Configuracion de Identificación utilizara automaticamente la biblioteca pam_oddjob_mkhomedir.so si esta esta disponible. De otra manera, quedara predeterminada a utilizar pam_mkhomedir.so.
Si no se hubieran realizado los pasos precedentes antes de la creacion de los directorios home personalizados, usted puede utilizar las siguientes instrucciones para corregir los permisos y contextos SELinux (otra vez, remplace el los nombres de directorios con los nombres que se aplican a su sistema):
# semanage fcontext -a -e /home /home/locale
# restorecon -R -v /home/locale
9.2.3.2.2.2. Utilizando statements "include" en Configuraciones PAM
La reciente implementación de PAM le permite a usted utilizar declaraciones include en las configuraciones PAM. Por ejemplo:
...
session     include      system-auth
session     optional     pam_console.so
...
En el ejemplo precedente, si se recibe una condicion sufficient a partir de system-auth PAM_SUCCESS, no se ejecutara pam_console.so.
9.2.3.2.3. Configurando Control de Acceso
SSSD provee un mecanismo de control de acceso rudimentario, ofreciendo dos soluciones basadas en el valor de la opcion access_provider en la seccion [domain/<NAME>] del archivo /etc/sssd/sssd.conf.
9.2.3.2.3.1. El proveedor de Acceso Único
La primera de esas soluciones se conoce como Proveedor de Acceso Unico,y se basa en la implementación de listas de acceso o negación de usuarios. Para habilitar el Proveedor de Acceso Único, usted necesita configurar la opción access_provider a simple, y luego agregar los nombres de usuarios en una lista separada por comas sea para las opciones simple_allow_users o simple_deny_users.
Utilizando el proveedor de Acceso Único
Al utilizar el Proveedor de Acceso Único, usted puede continuar soportando un numero determindado de ingresos para mantener las cuentas comunes de una empresa o un departamento de computadores portátiles, pero usted puede querer restringir la utilización de un computador portátil en particular a uno o dos usuarios. Esto quiere decir que aun si un usuario distinto se se ha identificado con éxito con el mismo proveedor de identificación, el Proveedor de Acceso Único prevendría a ese usuario de ingresar al sistema
El ejemplo siguiente demuestra la utilización del Proveedor de Acceso Único para permitir el acceso a dos usuarios. Este ejemplo asume que SSSD esta configurado correctamente y que example.com es uno de los dominios especificados en la sección [sssd] sección, y solo muestra las opciones especificas del Proveedor de Acceso Único.
[domain/example.com]
access_provider = simple
simple_allow_users = user1, user2

Utilizando el proveedor de ID local

The Local ID provider does not support simple as an access provider.
Reglas de Control de Acceso
The Simple Access Provider adheres to the following three rules to determine which users should or should not be granted access:
  • If both lists are empty, access is granted.
  • If simple_allow_users is set, only users from this list are allowed access. This setting supersedes the simple_deny_users list (which would be redundant).
  • If the simple_allow_users list is empty, users are allowed access unless they appear in the simple_deny_users list.

Do not define both simple_allow_users and simple_deny_users

Defining both simple_allow_users and simple_deny_users is a configuration error. If this occurs, SSSD will output an error to the /var/log/sssd/sssd_default.log log file when loading the back end, but continue to start normally. Future versions of SSSD will output an error and fail to start.
9.2.3.2.3.2. EL proveedor de Acceso LDAP
The second access control solution uses the LDAP server itself as the access provider (access_provider=ldap) and the associated filter option (ldap_access_filter) to specify which users are granted access to the specified host. Note that these two options are codependent; if you use LDAP as your access provider then you must specify a value for the ldap_access_filter option, otherwise all users will be denied access. If you are not using LDAP as your access provider, then the ldap_access_filter option has no effect.
Utilizando el proveedor de Acceso LDAP
The following example demonstrates the use of the LDAP Access Provider to grant access to members of the "allowedusers" group in LDAP. This example assumes that SSSD is correctly configured and example.com is one of the domains specified in the [sssd] section, and only shows the LDAP Access Provider-specific options.
[domain/example.com]
access_provider = ldap
ldap_access_filter = memberOf=cn=allowedusers,ou=Groups,dc=example,dc=com

Utilizando los archivos temporales fuera de linea

Offline caching for this feature is limited to determining whether or not the user's last online login attempt was successful. If they were granted access during their last login, they will continue to be granted access while offline, and vice-versa.
Refer to the sssd-ldap manual page for more information about using the LDAP Access Provider.
9.2.3.2.4. Configurando Failover
The failover feature allows back ends to automatically switch to a different server if the primary server fails. These servers are entered as a case-insensitive, comma-separated list in the [domain/<NAME>] sections of the /etc/sssd/sssd.conf file, and listed in order of preference. This list can contain any number of servers.
For example, if you have configured a native LDAP domain, you could specify the following as your ldap_uri values:
ldap_uri = ldap://ldap0.mydomain.org, ldap://ldap1.mydomain.org, ldap://ldap2.mydomain.org
In this configuration, ldap://ldap0.mydomain.org functions as the primary server. If this server fails, the SSSD failover mechanism first attempts to connect to ldap1.mydomain.org, and if that server is unavailable, it then attempts to connect to ldap2.mydomain.org.
If the parameter that specifies which server to connect to for the specific domain (for example, ldap_uri, krb5_server, …) is not specified, the back end defaults to using Use service discovery. Refer to Sección 9.2.3.2.4.1, “Using SRV Records with Failover” for more information on service discovery.

No utilice parámetros múltiples ldap_uri

Do not use multiple ldap_uri parameters to specify your failover servers. The failover servers must be entered as a comma-separated list of values for a single ldap_uri parameter. If you enter multiple ldap_uri parameters, SSSD only recognizes the last entry.
Future versions of SSSD will throw an error upon receiving additional ldap_uri entries.
9.2.3.2.4.1. Using SRV Records with Failover
SSSD also supports the use of SRV records in its failover configuration. This means that you can specify a server that is later resolved into a list of specific servers using SRV requests. The priority and weight attributes of SRV records provide further opportunity for specifying which servers should be contacted first in the event that the primary server fails.
For every service with which you want to use service discovery, you need to add a special DNS record to your DNS server using the following form:
_service._protocol._domain TTL priority weight port hostname
A typical configuration would contain multiple such records, each with a different priority (for failover) and different weights (for load balancing).
The client then makes an SRV DNS query to retrieve a list of host names, their priorities, and weights. These queries are of the form _service._protocol._domain, for example, _ldap._tcp._redhat.com. The client then sorts this list according to the priorities and weights, and connects to the first server in this sorted list.
For more information on SRV records, refer to RFC 2782.
9.2.3.2.4.2. How the Failover Mechanism Works
The failover mechanism distinguishes between machines and services. The back end first tries to resolve the hostname of a given machine; if this resolution attempt fails, the machine is considered offline. No further attempts are made to connect to this machine for any other service. If the resolution attempt succeeds, the back end tries to connect to a service on this machine. If the service connection attempt fails, then only this particular service is considered offline and the back end automatically switches over to the next service. The machine is still considered online and might still be tried for another service.
The failover mechanism does not handle DNS A records with multiple IP addresses; instead it only uses the first address. DNS round-robin cannot be used for failover. Further, providing multiple A records does not provide failover. Only the first A record is used, and if a lookup attempt on the first record fails then the system attempts no further lookups. To find multiple servers with a single request, and thus implementing failover, SSSD relies on SRV resource records, as explained in Sección 9.2.3.2.4.1, “Using SRV Records with Failover”.
Further connection attempts are made to machines or services marked as offline after a specified period of time; this is currently hard coded to 30 seconds. If there are no more machines to try, the back end as a whole switches to offline mode, and then attempts to reconnect every 30 seconds.

9.2.4. Configuring Services

Individual pieces of SSSD functionality are provided by special SSSD services that are started and stopped together with SSSD. The services provided by SSSD have their own configuration sections. The [sssd] section also lists the services that are active and should be started when sssd starts within the services directive.
SSSD currently provides several services:
  • NSS — An NSS provider service that answers NSS requests from the sssd_nss module.
  • PAM — A PAM provider service that manages a PAM conversation through the sssd_pam PAM module.
  • monitor — A special service that monitors all other SSSD services, and starts or restarts them as needed. Its options are specified in the [sssd] section of the /etc/sssd/sssd.conf configuration file.

9.2.4.1. Configuration Options

The following sections cover the most important SSSD configuration options. Refer to the sssd.conf(5) manual page that ships with SSSD for information on all the available configuration options.
9.2.4.1.1. General Configuration Options
  • debug_level (integer)
    Sets the debug level for a particular service. This is a per-service setting (that is, it can appear in any of the [service/<NAME>] sections in the SSSD configuration file).
  • reconnection_retries (integer)
    In the event of a data provider crash or restart, this specifies the number of times that a service should attempt to reconnect.

    DNS lookup of IPv6 addresses

    If a DNS lookup fails to return an IPv4 address for a hostname, SSSD attempts to look up an IPv6 address before returning a failure. Note that this only ensures that the async resolver identifies the correct address; there is currently a bug in the LDAP code that prevents SSSD from connecting to an LDAP server over IPv6. This is being investigated separately.
9.2.4.1.2. NSS Configuration Options
Use the following options to configure the Name Service Switch (NSS) service. Refer to the sssd.conf(5) manual page for full details about each option.
  • enum_cache_timeout (integer)
    Specifies for how long (in seconds) sssd_nss should cache enumerations (requests for information about all users).
  • entry_cache_nowait_percentage (integer)
    Specifies for how long sssd_nss should return cached entries before initiating an out-of-band cache refresh (0 disables this feature).
    You can configure the entry cache to automatically update entries in the background if they are requested beyond a percentage of the entry_cache_timeout value for the domain.
    Valid values for this option are 0-99, and represent a percentage of the entry_cache_timeout value for each domain.
  • entry_negative_timeout (integer)
    Specifies for how long (in seconds) sssd_nss should cache negative cache hits (that is, queries for invalid database entries, such as nonexistent ones) before asking the back end again.
  • filter_users, filter_groups (string)
    Exclude certain users from being fetched from the sss NSS database. This is particularly useful for system accounts such as root.
  • filter_users_in_groups (Boolean)
    If set to TRUE, specifies that users listed in the filter_users list do not appear in group memberships when performing group lookups. If set to FALSE, group lookups return all users that are members of that group. If not specified, defaults to TRUE.
9.2.4.1.3. PAM Configuration Options
Use the following options to configure the Pluggable Authentication Module (PAM) service.
  • offline_credentials_expiration (integer)
    If the authentication provider is offline, specifies for how long to allow cached log-ins (in days). This value is measured from the last successful online log-in. If not specified, defaults to 0 (no limit).
  • offline_failed_login_attempts (integer)
    If the authentication provider is offline, specifies how many failed log in attempts are allowed. If not specified, defaults to 0 (no limit).
  • offline_failed_login_delay (integer)
    Specifies the time in minutes after the value of offline_failed_login_attempts has been reached before a new log in attempt is possible.
    If set to 0, the user cannot authenticate offline if the value of offline_failed_login_attempts has been reached. Only a successful online authentication can re-enable offline authentication. If not specified, defaults to 5.

9.2.5. Configuring Domains

A domain is a database of user information. SSSD can use more than one domain at the same time, but at least one must be configured for SSSD to start. Using SSSD domains, it is possible to use several LDAP servers providing several unique namespaces. You can specify not only where users' identity information is stored, but how users authenticate against each of the specified domains.
SSSD supports the following identity and authentication combinations:
LDAP/LDAP
This combination uses an LDAP back end as both the identity and authentication provider. For more information, refer to Sección 9.2.5.2, “Configuring an LDAP Domain”.
LDAP/KRB5
This combination uses an LDAP back end as the identity provider, and uses Kerberos to provide authentication. For more information, refer to Sección 9.2.6, “Setting Up Kerberos Authentication”.
proxy
Specifying a proxy identity or an authentication provider uses an existing NSS library or a customized PAM stack, but takes advantage of the SSSD caching mechanism. For more information, refer to Sección 9.2.7, “Configuring a Proxy Domain”.
The following example assumes that SSSD is correctly configured and FOO is one of the domains in the [sssd] section. This example shows only the configuration of Kerberos authentication; it does not include any identity provider.
[domain/FOO]
auth_provider = krb5
krb5_server = 192.168.1.1
krb5_realm = EXAMPLE.COM

9.2.5.1. Domain Configuration Options

You can add new domain configurations to the [domain/<NAME>] sections of the /etc/sssd/sssd.conf file, and then add the list of domains to the domains attribute of the [sssd] section, in the order you want them to be queried.
9.2.5.1.1. General Domain Configuration Options
You can use the following configuration options in a domain configuration section:
  • min_id,max_id (integer)
    Specifies the UID and GID limits for the domain. If a domain contains entries that are outside these limits, they are ignored.
    The default value for min_id is 1; the default value for max_id is 0 (unbounded).

    Avoid conflicts with users in /etc/passwd

    If min_id is unspecified, it defaults to 1 for any back end. This default was chosen to provide compatibility with existing systems and to ease any migration attempts. LDAP administrators should be aware that granting identities in this range may conflict with users in the local /etc/passwd file. To avoid these conflicts, min_id should be set to 1000 or higher wherever possible.
    The min_id option determines the minimum acceptable value for both UID and GID numbers. Accounts with either UID or GID values below the min_id value are filtered out and not made available on the client.
  • enumerate (Boolean)
    Specifies whether or not to enumerate (list) the users and groups of a domain.
    Enumeration means that the entire set of available users and groups on the remote source is cached on the local machine. When enumeration is disabled, users and groups are only cached as they are requested.

    Disable enumeration for domains with many users and groups

    If a client has enumeration enabled, reinitialization of the client results in a complete refresh of the entire set of available users and groups from the remote source. Similarly, when SSSD is connected to a new server, the entire set of available users and groups from the remote source is pulled and cached on the local machine. In a domain with a large amount of clients connected to a remote source, both aforementioned cases can affect the network performance due to frequent queries from the clients. If the set of available users and groups is large enough, it will affect the performance of clients as well. For performance reasons, it is recommended that you disable enumeration for domains with many users and groups.
    The default value for this parameter is FALSE. Set this value to TRUE to enable enumeration of users and groups of a domain.
  • timeout (integer)
    Specifies the timeout in seconds for this particular domain.
    This is used to ensure that the back end process is alive and capable of answering requests. The default value for this parameter is 10 seconds. Raising this timeout might prove useful for slower back ends, such as distant LDAP servers.

    Changing the timeout value to 0

    If you set timeout = 0, SSSD reverts to the default value; you cannot force a timeout value of zero, because this would force the sssd daemon into a loop.
  • cache_credentials (Boolean)
    Specifies whether or not to store user credentials in the local SSSD domain database cache.
    The default value for this parameter is FALSE. You should set this value to TRUE for domains other than local if you want to enable offline authentication.
  • id_provider (string)
    Specifies the data provider identity back end to use for this domain. Currently supported identity back ends are:
    • proxy — Support a legacy NSS provider (for example, nss_nis).

      Changing the id_provider value to proxy

      SSSD needs to know which legacy NSS library to load in order to start successfully. If you set id_provider to proxy, ensure that you also specify a value for proxy_lib_name. Refer to Sección 9.2.7, “Configuring a Proxy Domain” for information on this attribute.
    • local — SSSD internal local provider.
    • ldap — LDAP provider.
  • entry_cache_timeout (integer)
    Specifies for how long the domain's data provider should cache positive cache hits (that is, queries for valid database entries) before asking the database again.
  • use_fully_qualified_names (Boolean)
    Specifies whether or not requests to this domain require fully-qualified domain names.
    If set to TRUE, all requests to this domain must use fully-qualified domain names. It also means that the output from the request displays the fully-qualified name.
    The ability to restrict requests in this way means that if you know you have multiple domains with conflicting usernames, then there is no doubt about which username the query will resolve.
    Consider the following examples, in which the IPA domain database contains a user named ipauser01, and the use_fully_qualified_names attribute is set to TRUE:
    # getent passwd ipauser01
    [no output]
    # getent passwd ipauser01@IPA
    ipauser01@IPA:x:937315651:937315651:ipauser01:/home/ipauser01:/bin/sh
    
    In the following examples, using the same IPA domain and user, the use_fully_qualified_names attribute is set to FALSE:
    # getent passwd ipauser01
    ipauser01:x:937315651:937315651:ipauser01:/home/ipauser01:/bin/sh
    # getent passwd ipauser01@IPA
    ipauser01:x:937315651:937315651:ipauser01:/home/ipauser01:/bin/sh
    

    Changing the use_fully_qualified_names value to FALSE

    If use_fully_qualified_names is set to FALSE, you can continue to use the fully-qualified name in your requests, but only the simplified version is displayed in the output.
    SSSD can only parse name@domain, not name@realm. You can, however, use the same name for both your domain and your realm.
  • auth_provider (string)
    The authentication provider used for the domain. The default value for this option is the value of id_provider if it is set and can handle authentication requests.
    Currently supported authentication providers are:
    • ldap — for native LDAP authentication. Refer to the sssd-ldap(5) manual page for more information on configuring LDAP.
    • krb5 — for Kerberos authentication. Refer to the sssd-krb5(5) manual page for more information on configuring Kerberos.
    • proxy — for relaying authentication to some other PAM target.
    • none — explicitly disables authentication.
9.2.5.1.2. Proxy Configuration Options
  • proxy_pam_target (string)
    This option is only used when the auth_provider option is set to proxy, and specifies the target to which PAM must proxy.
    This option has no default value. If proxy authentication is required, you need to specify your own PAM target. This corresponds to a file containing PAM stack information in the system's default PAM configuration directory. On Fedora-based systems, this is the /etc/pam.d/ directory.

    Avoid recursive inclusion of pam_sss

    Ensure that your proxy PAM stack does not recursively include pam_sss.so.
  • proxy_lib_name (string)
    This option is only used when the id_provider option is set to proxy, and specifies which existing NSS library to proxy identity requests through.
    This option has no default value. You need to manually specify an existing library to take advantage of this option. For example, set this value to nis to use the existing libnss_nis.so file.

9.2.5.2. Configuring an LDAP Domain

An LDAP domain is one where the id_provider option is set to ldap (id_provider = ldap). Such a domain requires a running LDAP server against which to authenticate. This can be an open source LDAP server such as OpenLDAP or Microsoft Active Directory. SSSD currently supports Microsoft Active Directory 2003 (+Services for UNIX) and Active Directory 2008 (+Subsystem for UNIX-based Applications). In all cases, the client configuration is stored in the /etc/sssd/sssd.conf file.
How to Authenticate Against an LDAP Server
SSSD does not support authentication over an unencrypted channel. Consequently, if you want to authenticate against an LDAP server, either TLS/SSL or LDAPS is required. If the LDAP server is used only as an identity provider, an encrypted channel is not needed.
Edit your /etc/sssd/sssd.conf file to include the following settings:
# A native LDAP domain
[domain/LDAP]
enumerate = false
cache_credentials = TRUE

id_provider = ldap
auth_provider = ldap
ldap_schema = rfc2307
chpass_provider = ldap

ldap_uri = ldap://ldap.mydomain.org
ldap_search_base = dc=mydomain,dc=org
ldap_tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

Creating a certificate with an IP address instead of the server name

If you wish to use an IP address in the ldap_uri option instead of the server name, for example, if GSSAPI is used to avoid time consuming DNS lookups, the TSL/SSL setup might fail. This is due to the fact that TSL/SSL certificates contain the server name only. However, a special field in the certificate, called Subject Alternative Name (subjectAltName), can be used to additionally set the IP address of the server.
The following steps show how to create a certificate with a Subject Alternative Name being the IP address of your server:
  1. Using your command line, execute the following command to convert an existing certificate (previously signed by the key.pem key) into a certificate request:
    openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey key.pem
    Alternatively, if you are using a self-signed certificate(for example, one created by the Fedora OpenLDAP package in /etc/pki/tls/certs/slapd.pem), execute the following command:
    openssl x509 -x509toreq -in old_cert.pem -out req.pem -signkey old_cert.pem
  2. Edit your /etc/pki/tls/openssl.cnf configuration file to include the following line under the [ v3_ca ] section:
    subjectAltName = IP:10.0.0.10
    Replace the IP address with one of your choice.
  3. By executing the following command, use the previously generated certificate request to generate a new self-signed certificate that will contain your desired IP address:
    openssl x509 -req -in req.pem -out new_cert.pem -extfile ./openssl.cnf -extensions v3_ca -signkey old_cert.pem
    where:
    • The openssl x509 command creates the new certificate.
    • The -req option tells the command to expect a certificate request as an input.
    • The -in and -out options specify the input and output files.
    • The -extfile option expects a file containing certificate extensions to use (in our case the subjectAltName extension).
    • The -extensions option specifies the section of the openssl.cnf file to add certificate extensions from (in this case, the [ v3_ca ] section).
    • The -signkey option tells the command to self-sign the input file using the supplied private key.
    For more information on the x509 utility and its parameters, refer to man x509.
  4. Lastly, copy the private key block from the old_cert.pem file into the new_cert.pem file to keep all relevant information in one file.
When creating a certificate through the certutil utility provided by the nss-utils package, note that certutil supports DNS subject alternative names for certificate creation only.
It is advisable to use a Certificate Authority to issue your certificate. Consider using the Red Hat Certificate System; for more information on managing subject names and subject alternative names in your certificate, refer to the Red Hat Certificate System Admin Guide.
Selecting an LDAP Schema
You can set the ldap_schema attribute to either rfc2307 or rfc2307bis. These schema define how groups in LDAP are specified. In RFC 2307, group objects use a multi-valued attribute, memberuid, which lists the names of the users that belong to that group. In RFC 2307bis, instead of the memberuid, group objects use the member attribute. Rather than just the name of the user, this attribute contains the full Distinguished Name (DN) of another object in the LDAP database. This means that groups can have other groups as members. That is, it adds support for nested groups.
SSSD assumes that your LDAP server is using RFC 2307. If your LDAP server is using RFC 2307bis, and you do not update the /etc/sssd/sssd.conf file accordingly, this can impact how your users and groups are displayed. It also means that some groups will not be available and network resources may be inaccessible even though you have permissions to use them.
For example, when using RFC 2307bis and you have configured both primary and secondary groups, or are using nested groups, you can use the id command to display these groups:
[f12server@ipaserver ~]$ id
uid=500(f12server) gid=500(f12server) groups=500(f12server),510(f12tester)
If instead you have configured your client to use RFC 2307 then only the primary group is displayed.
Changes to this setting only affect how SSSD determines the groups to which a user belongs; there is no negative effect on the actual user data. If you do not know the correct value for this attribute, consult your System Administrator.
Specifying Timeout Values
SSSD supports a number of timeout values that apply when configuring an LDAP domain. These are described below.
  • ldap_search_timeout (integer) — Specifies the timeout (in seconds) that LDAP searches are allowed to run before they are canceled and cached results are returned (and offline mode is entered). If not specified:
    Defaults to five when enumerate = False
    Defaults to 30 when enumerate = True. This option is forced to a minimum of 30 in this case.

    The ldap_network_timeout option is going to be changed

    This option is subject to change in future versions of SSSD, where it may be replaced by a series of timeouts for specific look-up types.
  • ldap_network_timeout (integer) — Specifies the timeout (in seconds) after which the poll(2)/select(2) following a connect(2) returns in case of no activity.
    If not specified, defaults to five.
  • ldap_opt_timeout (integer) — Specifies the timeout (in seconds) after which calls to synchronous LDAP APIs will abort if no response is received. This option also controls the timeout when communicating with the KDC in case of a SASL bind.
    If not specified, defaults to five.

DNS Service Discovery

The DNS service discovery feature allows the LDAP back end to automatically find the appropriate DNS servers to connect to using a special DNS query. For more information on the DNS service discovery feature, refer to Sección 9.2.3.2.4.1, “Using SRV Records with Failover”.

9.2.5.3. Configuring a Microsoft Active Directory Domain

You can configure SSSD to use Microsoft Active Directory as an LDAP back end, providing both identity and authentication services. If you are using Active Directory 2003, SSSD requires that you install Windows Services for UNIX (SFU) on the machine where Active Directory is installed. If instead you are using Active Directory 2008, you need to install the Subsystem for UNIX-based Applications (SUA) on the Active Directory machine.

SFU is not supported on 64-bit systems

SFU is not supported on 64-bit operating systems. Refer to http://support.microsoft.com/kb/920751 for more information about which Windows systems can provide a suitable platform for an SSSD LDAP back end.
9.2.5.3.1. Configuring Active Directory 2003 as an LDAP Back End
The example /etc/sssd/sssd.conf file that ships with SSSD contains the following sample configuration for Active Directory 2003:
# Example LDAP domain where the LDAP server is an Active Directory 2003 server.

[domain/AD]
description = LDAP domain with AD server
enumerate = false
min_id = 1000
;
id_provider = ldap
auth_provider = ldap
ldap_uri = ldap://your.ad.server.com
ldap_schema = rfc2307bis
ldap_search_base = dc=example,dc=com
ldap_default_bind_dn = cn=Administrator,cn=Users,dc=example,dc=com
ldap_default_authtok_type = password
ldap_default_authtok = YOUR_PASSWORD
ldap_user_object_class = person
ldap_user_name = msSFU30Name
ldap_user_uid_number = msSFU30UidNumber
ldap_user_gid_number = msSFU30GidNumber
ldap_user_home_directory = msSFU30HomeDirectory
ldap_user_shell = msSFU30LoginShell
ldap_user_principal = userPrincipalName
ldap_group_object_class = group
ldap_group_name = msSFU30Name
ldap_group_gid_number = msSFU30GidNumber
This configuration is specific to Windows Active Directory 2003. Refer to Sección 9.2.5.3.2, “Configuring Active Directory 2003 R2 and 2008 as LDAP Back Ends” for information on how to configure Active Directory 2003 R2 and Active Directory 2008.
Note that the above configuration assumes that the certificates are stored in the default location (that is, in /etc/openldap/cacerts) and that the c_rehash function has been used to create the appropriate symlinks.
More Information
Refer to the sssd-ldap(5) manual page for a full description of all the options that apply to LDAP domains.
9.2.5.3.2. Configuring Active Directory 2003 R2 and 2008 as LDAP Back Ends
The configuration of /etc/sssd/sssd.conf to support Active Directory 2003 R2 or Active Directory 2008 as a back end is similar to that for AD 2003. The following example configuration highlights the necessary changes.
# Example LDAP domain where the LDAP server is an Active Directory 2003 R2 or an Active Directory 2008 server.

[domain/AD]
description = LDAP domain with AD server
; debug_level = 9
enumerate = false

id_provider = ldap
auth_provider = ldap
chpass_provider = ldap

ldap_uri = ldap://your.ad.server.com
ldap_tls_cacertdir = /etc/openldap/cacerts
ldap_tls_cacert = /etc/openldap/cacerts/test.cer
ldap_search_base = dc=example,dc=com
ldap_default_bind_dn = cn=Administrator,cn=Users,dc=example,dc=com
ldap_default_authtok_type = password
ldap_default_authtok = YOUR_PASSWORD
ldap_pwd_policy = none
ldap_user_object_class = user
ldap_group_object_class = group
Note that the above configuration assumes that the certificates are stored in the default location (that is, in /etc/openldap/cacerts) and that the c_rehash function has been used to create the appropriate symlinks.

9.2.6. Setting Up Kerberos Authentication

In order to set up Kerberos authentication, you need to know the address of your key distribution center (KDC) and the Kerberos domain. The client configuration is then stored in the /etc/sssd/sssd.conf file.
The Kerberos 5 authentication back end does not contain an identity provider and must be paired with one in order to function properly (for example, id_provider = ldap). Some information required by the Kerberos 5 authentication back end must be supplied by the identity provider, such as the user's Kerberos Principal Name (UPN). The identity provider configuration should contain an entry to specify this UPN. Refer to the manual page for the applicable identity provider for details on how to configure the UPN.
If the UPN is not available in the identity back end, SSSD will construct a UPN using the format username@krb5_realm.
SSSD assumes that the Kerberos KDC is also a Kerberos kadmin server. However, it is very common for production environments to have multiple, read-only replicas of the KDC, but only a single kadmin server (because password changes and similar procedures are comparatively rare). To manage this type of configuration, you can use the krb5_kpasswd option to specify where your password changing service is running, or if it is running on a non-default port. If the krb5_kpasswd option is not defined, SSSD tries to use the Kerberos KDC in order to change the password. Refer to the sssd-krb5(5) manual page for more information about this and all Kerberos configuration options.
How to Set Up Kerberos Authentication
Edit your /etc/sssd/sssd.conf file to include the following settings:
# A domain with identities provided by LDAP and authentication by Kerberos
[domain/KRBDOMAIN]
enumerate = false
id_provider = ldap
chpass_provider = krb5
ldap_uri = ldap://ldap.mydomain.org
ldap_search_base = dc=mydomain,dc=org
tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

auth_provider = krb5
krb5_server = 192.168.1.1
krb5_realm = EXAMPLE.COM
krb5_changepw_principal = kadmin/changepw
krb5_ccachedir = /tmp
krb5_ccname_template = FILE:%d/krb5cc_%U_XXXXXX
krb5_auth_timeout = 15
This example describes the minimum options that must be configured when using Kerberos authentication. Refer to the sssd-krb5(5) manual page for a full description of all the options that apply to configuring Kerberos authentication.

DNS Service Discovery

The DNS service discovery feature allows the Kerberos 5 authentication back end to automatically find the appropriate DNS servers to connect to using a special DNS query. For more information on the DNS service discovery feature, refer to Sección 9.2.3.2.4.1, “Using SRV Records with Failover”.

9.2.6.1. Setting up SASL/GSSAPI Authentication

GSSAPI (Generic Security Services Application Programming Interface) is a supported SASL (Simple Authentication and Security Layer) authentication method. Kerberos is currently the only commonly used GSSAPI implementation. An LDAP client and an LDAP server use SASL to take advantage of GSSAPI as the authentication method (an alternative to plain text passwords, etc.). The GSSAPI plug-in for SASL is then invoked on the client and server side to use Kerberos to communicate.
Using GSSAPI protected communication for LDAP is an advanced configuration not supported by the Authentication Configuration tool; the following steps show how to manually configure it.
On the KDC
  1. Using kadmin, set up a Kerberos service principal for the directory server. Use the -randkey option for the kadmin's addprinc command to create the principal and assign it a random key:
    kadmin: addprinc -randkey ldap/server.example.com
  2. Use the ktadd command to write the service principal to a file:
    kadmin: ktadd -k /root/ldap.keytab ldap/server.example.com
  3. Using kadmin, set up a Kerberos host principal for the client running SSSD. Use the -randkey option for the kadmin's addprinc command to create the principal and assign it a random key:
    kadmin: addprinc -randkey host/client.example.com
  4. Use the ktadd command to write the host principal to a file:
    kadmin: ktadd -k /root/client.keytab host/client.example.com
On the Directory Server
Complete the following steps for a directory server of your choice:
OpenLDAP
  1. Copy the previously created /root/ldap.keytab file from the KDC to the /etc/openldap/ directory and name it ldap.keytab.
  2. Make the /etc/openldap/ldap.keytab file read-writable for the ldap user and readable for the ldap group only.
Red Hat Directory Server
  1. Copy the previously created /root/ldap.keytab file from the KDC to the /etc/dirsrv/ directory and name it ldap.keytab.
  2. Uncomment the KRB5_KTNAME line in the /etc/sysconfig/dirsrv (or instance-specific) file, and set the keytab location for the KRB5_KTNAME variable. For example:
    # In order to use SASL/GSSAPI the directory
    # server needs to know where to find its keytab
    # file - uncomment the following line and set
    # the path and filename appropriately
    KRB5_KTNAME=/etc/dirsrv/ldap.keytab; export KRB5_KTNAME
On the Client
  1. Copy the previously created /root/client.keytab file from the KDC to the /etc/ directory and name it krb5.keytab. If the /etc/krb5.keytab file exists already, use the ktutil utility to merge both files properly. For more information on the ktutil utility, refer to man ktutil.
  2. Modify your /etc/sssd/sssd.conf file to include the following settings:
    ldap_sasl_mech = gssapi
    ldap_sasl_authid = host/client.example.com@EXAMPLE.COM
    ldap_krb5_keytab = /etc/krb5.keytab (default)
    ldap_krb5_init_creds = true (default)
    ldap_krb5_ticket_lifetime = 86400 (default)
    krb5_realm = EXAMPLE.COM
    

9.2.7. Configuring a Proxy Domain

SSSD currently only supports LDAP and Kerberos as authentication providers. If you prefer to use SSSD (for example, to take advantage of its caching functionality), but SSSD does not support your authentication method, you can set up a proxy authentication provider. This could be the case if you use fingerprint scanners or smart cards as part of your authentication process. Similarly, you can set up proxy to serve as an identity provider.
The following sections cover combinations of identity and authentication providers in which the proxy server takes the role of one.

9.2.7.1. proxy/KRB5

The following configuration is an example of a combination of a proxy identity provider used with Kerberos authentication:
Edit the /etc/sssd/sssd.conf configuration file to include the following settings:
[domain/PROXY_KRB5]
auth_provider = krb5
krb5_server = 192.168.1.1
krb5_realm = EXAMPLE.COM

id_provider = proxy
proxy_lib_name = nis
enumerate = true
cache_credentials = true
For more information on various Kerberos configuration options, refer to Sección 9.2.6, “Setting Up Kerberos Authentication”.

9.2.7.2. LDAP/proxy

An example of a combination of an LDAP identity provider and a proxy authentication provider is the use of the LDAP with a custom PAM stack. To enable authentication via the PAM stack, complete the following steps:
  1. Edit the /etc/sssd/sssd.conf configuration file to include the following settings:
    [domain/LDAP_PROXY]
    id_provider = ldap
    ldap_uri = ldap://example.com
    ldap_search_base = dc=example,dc=com
    
    auth_provider = proxy
    proxy_pam_target = sssdpamproxy
    enumerate = true
    cache_credentials = true
    
    By specifying the options above, authentication requests will be proxied via the /etc/pam.d/sssdpamproxy file which provides the needed module interfaces. Note that the pam_ldap.so file can be substituted with a PAM module of your choice.
    For more information on various LDAP configuration options, refer to Sección 9.2.5.2, “Configuring an LDAP Domain”.
  2. Create a /etc/pam.d/sssdpamproxy file (if not already created) and specify the following settings in it:
    auth          required      pam_ldap.so
    account       required      pam_ldap.so
    password      required      pam_ldap.so
    session       required      pam_ldap.so

9.2.7.3. proxy/proxy

An example of a combination of an proxy identity provider and a proxy authentication provider is the use of the proxy identity provider with a custom PAM stack. To enable authentication via the PAM stack, complete the following steps:

Make sure the nss-pam-ldapd package is installed

In order to use the proxy identity provider, you must have the nss-pam-ldapd package installed.
  1. Edit the /etc/sssd/sssd.conf configuration file to include the following settings:
    [domain/PROXY_PROXY]
    auth_provider = proxy
    id_provider = proxy
    proxy_lib_name = ldap
    proxy_pam_target = sssdproxyldap
    enumerate = true 
    cache_credentials = true
    
    By specifying the options above, authentication requests will be proxied via the /etc/pam.d/sssdproxyldap file which provides the needed module interfaces.
    For more information on the options used in the configuration example above, refer to man sssd.conf
  2. Create a /etc/pam.d/sssdproxyldap file (if not already created) and specify the following settings in it:
    auth          required      pam_ldap.so
    account       required      pam_ldap.so
    password      required      pam_ldap.so
    session       required      pam_ldap.so
  3. Edit the /etc/nslcd.conf file (the default configuration file for the LDAP name service daemon) to include the following settings:
    uid nslcd
    gid ldap
    uri ldaps://ldap.mydomain.org:636
    base dc=mydomain,dc=org
    ssl on
    tls_cacertdir /etc/openldap/cacerts
    For more information on the options used in the configuration example above, refer to man nslcd.conf

9.2.8. Troubleshooting

This section lists some of the issues you may encounter when implementing SSSD, the possible causes of these issues, and how to resolve them. If you find further issues that are not covered here, refer to the We Need Feedback section in the Preface for information on how to file a bug report.

9.2.8.1. Using SSSD Log Files

SSSD uses a number of log files to report information about its operation, and this information can help to resolve issues in the event of SSSD failure or unexpected behavior. The default location for these log files on Fedora—based systems is the /var/log/sssd/ directory.
SSSD produces a log file for each back end (that is, one log file for each domain specified in the /etc/sssd/sssd.conf file), as well as an sssd_pam.log and an sssd_nss.log file. This level of granularity can help you to quickly isolate and resolve any errors or issues you might experience with SSSD.
You should also examine the /var/log/secure file, which logs authentication failures and the reason for the failure. For example, if you see Reason 4: System Error reported against any failure, you should increase the debug level of the log files.
Producing More Verbose Log Files
If you are unable to identify and resolve any problems with SSSD after inspection of the default log files, you can configure SSSD to produce more verbose files. You can set the debug_level option in the /etc/sssd/sssd.conf for the domain that is causing concern, and then restart SSSD. Refer to the sssd.conf(5) manual page for more information on how to set the debug_level for a specific domain.
All log files include timestamps on debug messages by default. This can make it easier to understand any errors that may occur, why they occurred, and how to address them. If necessary, you can disable these timestamps by setting the appropriate parameter to FALSE in the /etc/sssd/sssd.conf file:
--debug-timestamps=FALSE

9.2.8.2. Problems with SSSD Configuration

  • SSSD fails to start
    • SSSD requires at least one properly configured domain before the service will start. Without such a domain, you might see the following error message when trying to start SSSD with the following command:
      # sssd -d4
      [sssd] [ldb] (3): server_sort:Unable to register control with rootdse!
      
      [sssd] [confdb_get_domains] (0): No domains configured, fatal error!
      [sssd] [get_monitor_config] (0): No domains configured.
      
      You can ignore the "Unable to register control with rootdse!" message, as it is erroneous. The other messages, however, indicate that SSSD is unable to locate any properly configured domains.
      Edit your /etc/sssd/sssd.conf file and ensure you have at least one properly configured domain, and then try to start SSSD.
    • SSSD requires at least one available service provider before it will start. With no available service providers, you might see the following error message when trying to start SSSD with the following command:
      # sssd -d4
      [sssd] [ldb] (3): server_sort:Unable to register control with rootdse!
      
      [sssd] [get_monitor_config] (0): No services configured!
      
      You can ignore the "Unable to register control with rootdse!" message, as it is erroneous. The other message, however, indicates that SSSD is unable to locate any available service providers.
      Edit your /etc/sssd/sssd.conf file and ensure you have at least one available service providers, and then try to start SSSD.

      Configuring the service providers

      SSSD requires that service providers be configured as a comma-separated list in a single services entry in the /etc/sssd/sssd.conf file. If services are listed in multiple entries, only the last entry is recognized by SSSD.
    • Refer to the sssd.conf(5) manual page for more options that might assist in troubleshooting issues with SSSD.

9.2.8.3. Problems with SSSD Service Configuration

9.2.8.3.1. Problems with NSS
This section describes some common problems with NSS, their symptoms, and how to resolve them.
  • NSS fails to return user information
    • Ensure that NSS is running
      # systemctl is-active sssd.service
      This command should return results similar to the following:
      sssd (pid 21762) is running...
      
    • Ensure that you have correctly configured the [nss] section of the /etc/sssd/sssd.conf file. For example, ensure that you have not misconfigured the filter_users or filter_groups attributes. Refer to the NSS configuration options section of the sssd.conf(5) manual page for information on how to configure these attributes.
    • Ensure that you have included nss in the list of services that sssd should start
    • Ensure that you have correctly configured the /etc/nsswitch.conf file. Refer to the section Sección 9.2.3.2.1, “Configurando NSS” for information on how to correctly configure this file.
9.2.8.3.2. Problems with PAM
This section describes some common problems with PAM, their symptoms, and how to resolve them.
  • Setting the password for the local SSSD user prompts twice for the password
    When attempting to change a local SSSD user's password, you might see output similar to the following:
    [root@clientF11 tmp]# passwd user1000
    Changing password for user user1000.
    New password:
    Retype new password:
    New Password:
    Reenter new Password:
    passwd: all authentication tokens updated successfully.
    
    This is the result of an incorrect PAM configuration. Refer to Sección 9.2.3.2.2, “Configurando PAM”, and ensure that the use_authtok option is correctly configured in your /etc/pam.d/system-auth file.
9.2.8.3.3. Problems with NFS and NSCD
SSSD is not designed to be used with the nscd daemon, and will likely generate warnings in the SSSD log files. Even though SSSD does not directly conflict with nscd, the use of both at the same time can result in unexpected behavior (specifically with how long entries are being cached).
If you are using Network Manager to manage your network connections, it may take several minutes for the network interface to come up. During this time, various services will attempt to start. If these services start before the network is up (that is, the DNS servers cannot yet be reached) they will fail to identify the forward or reverse DNS entries they might need. These services will be reading an incorrect or possibly empty resolv.conf file. This file is typically only read once, and so any changes made to this file are not automatically applied.
This can result in the failure of some system services, and in particular can cause NFS locking to fail on the machine where the nscd service is running, unless that service is manually restarted.
One method of working around this problem is to enable caching for hosts and services in the /etc/nscd.conf file, and to rely on the SSSD cache for the passwd and group entries. With nscd answering hosts and services requests, these entries would have been cached and returned by nscd during the boot process.

NSCD and later versions of SSSD

Later versions of SSSD should negate any need for NSCD.

9.2.8.4. Problems with SSSD Domain Configuration

  • NSS returns incorrect user information
    • If your search for user information returns incorrect data, ensure that you do not have conflicting usernames in separate domains. If you use multiple domains, it is recommended that you set the use_fully_qualified_domains attribute to TRUE in the /etc/sssd/sssd.conf file.

9.2.8.5. Recursos adicionales

9.2.8.5.1. Manual Pages
SSSD ships with a number of manual pages, all of which provide additional information about specific aspects of SSSD, such as configuration files, commands, and available options. SSSD currently provides the following manual pages:
  • sssd.conf(5)
  • sssd-ipa(5)
  • sssd-krb5(5)
  • sssd-ldap(5)
  • sssd(8)
  • sssd_krb5_locator_plugin(8)
  • pam_sss(8)
You should refer to these manual pages for detailed information about all aspects of SSSD, its configuration, and associated tools and commands.
9.2.8.5.2. Mailing Lists
You can subscribe to the SSSD mailing list to follow and become involved in the development of SSSD, or to ask questions about any issues you may be experiencing with your SSSD deployment.
Visit https://fedorahosted.org/mailman/listinfo/sssd-devel to subscribe to this mailing list.

9.2.9. SSSD Configuration File Format

The following listing describes the current version (Version 2) of the SSSD configuration file format.
[sssd]
config_file_version = 2
services = nss, pam
domains = mybox.example.com, ldap.example.com, ipa.example.com, nis.example.com
# sbus_timeout = 300

[nss]
nss_filter_groups = root
nss_filter_users = root
nss_entry_cache_timeout = 30
nss_enum_cache_timeout = 30

[domain/mybox.example.com]
domain_type = local
enumerate = true
min_id = 1000
# max_id = 2000

local_default_shell = /bin/bash
local_default_homedir = /home

# Possible overrides
# id_provider = local
# auth_provider = local
# authz_provider = local
# passwd_provider = local

[domain/ldap.example.com]
domain_type = ldap
server = ldap.example.com, ldap3.example.com, 10.0.0.2
# ldap_uri = ldaps://ldap.example.com:9093
# ldap_use_tls = ssl
ldap_search_base = dc=ldap,dc=example,dc=com
enumerate = false

# Possible overrides
# id_provider = ldap
# id_server = ldap2.example.com
# auth_provider = krb5
# auth_server = krb5.example.com
# krb5_realm = KRB5.EXAMPLE.COM

[domain/ipa.example.com]
domain_type = ipa
server = ipa.example.com, ipa2.example.com
enumerate = false

# Possible overrides
# id_provider = ldap
# id_server = ldap2.example.com
# auth_provider = krb5
# auth_server = krb5.example.com
# krb5_realm = KRB5.EXAMPLE.COM

[domain/nis.example.com]
id_provider = proxy
proxy_lib = nis
auth_provider = proxy
proxy_auth_target = nis_pam_proxy

Capítulo 10. OpenSSH

SSH (Secure Shell) is a protocol which facilitates secure communications between two systems using a client/server architecture and allows users to log into server host systems remotely. Unlike other remote communication protocols, such as FTP or Telnet, SSH encrypts the login session, rendering the connection difficult for intruders to collect unencrypted passwords.
The ssh program is designed to replace older, less secure terminal applications used to log into remote hosts, such as telnet or rsh. A related program called scp replaces older programs designed to copy files between hosts, such as rcp. Because these older applications do not encrypt passwords transmitted between the client and the server, avoid them whenever possible. Using secure methods to log into remote systems decreases the risks for both the client system and the remote host.
Fedora includes the general OpenSSH package (openssh) as well as the OpenSSH server (openssh-server) and client (openssh-clients) packages. Note that the OpenSSH packages require the OpenSSL package (openssl), which installs several important cryptographic libraries, enabling OpenSSH to provide encrypted communications.

10.1. The SSH Protocol

10.1.1. ¿Por qué usar SSH?

Potential intruders have a variety of tools at their disposal enabling them to disrupt, intercept, and re-route network traffic in an effort to gain access to a system. In general terms, these threats can be categorized as follows:
Interception of communication between two systems
The attacker can be somewhere on the network between the communicating parties, copying any information passed between them. He may intercept and keep the information, or alter the information and send it on to the intended recipient.
This attack is usually performed using a packet sniffer, a rather common network utility that captures each packet flowing through the network, and analyzes its content.
Impersonation of a particular host
Attacker's system is configured to pose as the intended recipient of a transmission. If this strategy works, the user's system remains unaware that it is communicating with the wrong host.
This attack can be performed using a technique known as DNS poisoning, or via so-called IP spoofing. In the first case, the intruder uses a cracked DNS server to point client systems to a maliciously duplicated host. In the second case, the intruder sends falsified network packets that appear to be from a trusted host.
Both techniques intercept potentially sensitive information and, if the interception is made for hostile reasons, the results can be disastrous. If SSH is used for remote shell login and file copying, these security threats can be greatly diminished. This is because the SSH client and server use digital signatures to verify their identity. Additionally, all communication between the client and server systems is encrypted. Attempts to spoof the identity of either side of a communication does not work, since each packet is encrypted using a key known only by the local and remote systems.

10.1.2. Main Features

El protocolo SSH proporciona los siguientes tipos de protección:
No one can pose as the intended server
Después de la conexión inicial, el cliente puede verificar que se está conectando al mismo servidor al que se conectó anteriormente.
No one can capture the authentication information
El cliente transmite su información de autenticación al servidor usando una encriptación robusta de 128 bits.
No one can intercept the communication
Todos los datos enviados y recibidos durante la sesión se transfieren por medio de encriptación de 128 bits, lo cual los hacen extremadamente difícil de descifrar y leer.
Additionally, it also offers the following options:
It provides secure means to use graphical applications over a network
Using a technique called X11 forwarding, the client can forward X11 (X Window System) applications from the server.
It provides a way to secure otherwise insecure protocols
The SSH protocol encrypts everything it sends and receives. Using a technique called port forwarding, an SSH server can become a conduit to securing otherwise insecure protocols, like POP, and increasing overall system and data security.
It can be used to create a secure channel
The OpenSSH server and client can be configured to create a tunnel similar to a virtual private network for traffic between server and client machines.
It supports the Kerberos authentication
OpenSSH servers and clients can be configured to authenticate using the GSSAPI (Generic Security Services Application Program Interface) implementation of the Kerberos network authentication protocol.

10.1.3. Protocol Versions

Two varieties of SSH currently exist: version 1, and newer version 2. The OpenSSH suite under Fedora uses SSH version 2, which has an enhanced key exchange algorithm not vulnerable to the known exploit in version 1. However, for compatibility reasons, the OpenSSH suite does support version 1 connections as well.

Avoid using SSH version 1

To ensure maximum security for your connection, it is recommended that only SSH version 2-compatible servers and clients are used whenever possible.

10.1.4. Secuencia de eventos de una conexión SSH

La siguiente serie de eventos lo ayudan a proteger la integridad de la comunicación SSH entre dos host.
  1. Se lleva a cabo un "apretón de manos" encriptado para que el cliente pueda verificar que se está comunicando con el servidor correcto.
  2. La capa de transporte de la conexión entre el cliente y la máquina remota es encriptada mediante un código simétrico.
  3. El cliente se autentica ante el servidor.
  4. El cliente remoto interactúa con la máquina remota a través de la conexión encriptada.

10.1.4.1. Capa de transporte

El papel principal de la capa de transporte es facilitar una comunicación segura entre los dos hosts durante la autenticación y la subsecuente comunicación. La capa de transporte lleva a cabo esta tarea manejando la encriptación y decodificación de datos y proporcionando protección de integridad de los paquetes de datos mientras son enviados y recibidos. La capa de transporte proporciona compresión de datos, lo que acelera la transmisión de la información.
Al contactar un cliente a un servidor por medio del protocolo SSH se negocian varios puntos importantes para que ambos sistemas puedan construir la capa de transporte correctamente. Durante el intercambio se producen los siguientes pasos:
  • Intercambio de claves
  • Se determina el algoritmo de encriptación de la clave pública
  • Se determina el algoritmo de la encriptación simétrica
  • Se determina el algoritmo autenticación de mensajes
  • Se determina el algoritmo del hash
El servidor se identifica ante el cliente con una llave de host única durante el intercambio de llaves. Obviamente, si este cliente nunca se había comunicado antes con este determinado servidor, la llave del servidor le resultará desconocida al cliente y no lo conectará. OpenSSH evita este problema permitiendo que el cliente acepte la llave del host del servidor después de que el usuario es notificado y verifica la aceptación de la nueva llave del host. Para las conexiones posteriores, la llave del host del servidor se puede verificar con la versión guardada en el cliente, proporcionando la confianza de que el cliente se está comunicando con el servidor deseado. Si en el futuro, la llave del host ya no coincide, el usuario debe eliminar la versión guardada antes de que una conexión pueda ocurrir.

Always verify the integrity of a new SSH server

Un atacante podría enmascararse como servidor SSH durante el contacto inicial ya que el sistema local no conoce la diferencia entre el servidor en cuestión y el servidor falso configurado por un agresor. Para evitar que esto ocurra, debería verificar la integridad del nuevo servidor SSH contactando con el administrador del servidor antes de conectarse por primera vez o en el evento de que no coincidan las claves.
SSH fue ideado para funcionar con casi cualquier tipo de algoritmo de clave pública o formato de codificación. Después del intercambio de claves inicial se crea un valor hash usado para el intercambio y un valor compartido secreto, los dos sistemas empiezan inmediatamente a calcular claves y algoritmos nuevos para proteger la autenticación y los datos que se enviarán a través de la conexión en el futuro.
Después de que una cierta cantidad de datos haya sido transmitida con un determinado algoritmo y clave (la cantidad exacta depende de la implementación de SSH), ocurre otro intercambio de claves, el cual genera otro conjunto de valores de hash y un nuevo valor secreto compartido. De esta manera aunque un agresor lograse determinar los valores de hash y de secreto compartido, esta información sólo será válida por un periodo de tiempo limitado.

10.1.4.2. Autenticación

Cuando la capa de transporte haya construido un túnel seguro para transmitir información entre los dos sistemas, el servidor le dirá al cliente de los diferentes métodos de autenticación soportados, tales como el uso de firmas privadas codificadas con claves o la inserción de una contraseña. El cliente entonces intentará autenticarse ante el servidor mediante el uso de cualquiera de los métodos soportados.
Los servidores y clientes SSH se pueden configurar para permitir varios tipos de autenticación, lo cual le concede a cada lado la cantidad óptima de control. El servidor podrá decidir qué métodos de encriptación soportará basado en su pauta de seguridad; el cliente puede elegir el orden en que intentará utilizar los métodos de autenticación entre las opciones a disposición.

10.1.4.3. Canales

After a successful authentication over the SSH transport layer, multiple channels are opened via a technique called multiplexing[2]. Each of these channels handles communication for different terminal sessions and for forwarded X11 sessions.
Ambos clientes y servidores pueden crear un canal nuevo. Luego se le asigna un número diferente a cada canal en cada punta de la conexión. Cuando el cliente intenta abrir un nuevo canal, los clientes envían el número del canal junto con la petición. Esta información es almacenada por el servidor y usada para dirigir la comunicación a ese canal. Esto es hecho para que diferentes tipos de sesión no afecten una a la otra y así cuando una sesión termine, su canal pueda ser cerrado sin interrumpir la conexión SSH primaria.
Los canales también soportan el control de flujo, el cual les permite enviar y recibir datos ordenadamente. De esta manera, los datos no se envían a través del canal sino hasta que el host haya recibido un mensaje avisando que el canal está abierto y puede recibirlos.
El cliente y el servidor negocian las características de cada canal automáticamente, dependiendo del tipo de servicio que el cliente solicita y la forma en que el usuario está conectado a la red. Esto otorga una gran flexibilidad en el manejo de diferentes tipos de conexiones remotas sin tener que cambiar la infraestructura básica del protocolo.

10.2. An OpenSSH Configuration

In order to perform tasks described in this section, you must have superuser privileges. To obtain them, log in as root by typing:
su -

10.2.1. Archivos de configuración

There are two different sets of configuration files: those for client programs (that is, ssh, scp, and sftp), and those for the server (the sshd daemon).
System-wide SSH configuration information is stored in the /etc/ssh/ directory. See Tabla 10.1, “System-wide configuration files” for a description of its content.
Tabla 10.1. System-wide configuration files
Archivo de configuración Descripción
/etc/ssh/moduli Contains Diffie-Hellman groups used for the Diffie-Hellman key exchange which is critical for constructing a secure transport layer. When keys are exchanged at the beginning of an SSH session, a shared, secret value is created which cannot be determined by either party alone. This value is then used to provide host authentication.
/etc/ssh/ssh_config The default SSH client configuration file. Note that it is overridden by ~/.ssh/config if it exists.
/etc/ssh/sshd_config The configuration file for the sshd daemon.
/etc/ssh/ssh_host_dsa_key The DSA private key used by the sshd daemon.
/etc/ssh/ssh_host_dsa_key.pub The DSA public key used by the sshd daemon.
/etc/ssh/ssh_host_key The RSA private key used by the sshd daemon for version 1 of the SSH protocol.
/etc/ssh/ssh_host_key.pub The RSA public key used by the sshd daemon for version 1 of the SSH protocol.
/etc/ssh/ssh_host_rsa_key The RSA private key used by the sshd daemon for version 2 of the SSH protocol.
/etc/ssh/ssh_host_rsa_key.pub The RSA public key used by the sshd for version 2 of the SSH protocol.

User-specific SSH configuration information is stored in the user's home directory within the ~/.ssh/ directory. See Tabla 10.2, “User-specific configuration files” for a description of its content.
Tabla 10.2. User-specific configuration files
Archivo de configuración Descripción
~/.ssh/authorized_keys Holds a list of authorized public keys for servers. When the client connects to a server, the server authenticates the client by checking its signed public key stored within this file.
~/.ssh/id_dsa Contains the DSA private key of the user.
~/.ssh/id_dsa.pub The DSA public key of the user.
~/.ssh/id_rsa The RSA private key used by ssh for version 2 of the SSH protocol.
~/.ssh/id_rsa.pub The RSA public key used by ssh for version 2 of the SSH protocol
~/.ssh/identity The RSA private key used by ssh for version 1 of the SSH protocol.
~/.ssh/identity.pub The RSA public key used by ssh for version 1 of the SSH protocol.
~/.ssh/known_hosts Contains DSA host keys of SSH servers accessed by the user. This file is very important for ensuring that the SSH client is connecting the correct SSH server.

Refer to the ssh_config and sshd_config man pages for information concerning the various directives available in the SSH configuration files.

10.2.2. Starting an OpenSSH Server

Make sure you have relevant packages installed

To run an OpenSSH server, you must have the openssh-server and openssh packages installed. Refer to Sección 4.2.4, “Installing Packages” for more information on how to install new packages in Fedora.
To start the sshd daemon, type the following at a shell prompt:
systemctl start sshd.service
To stop the running sshd daemon, use the following command:
systemctl stop sshd.service
If you want the daemon to start automatically at the boot time, type:
systemctl enable sshd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.
Note that if you reinstall the system, a new set of identification keys will be created. As a result, clients who had connected to the system with any of the OpenSSH tools before the reinstall will see the following message:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
To prevent this, you can back up the relevant files from the /etc/ssh/ directory (see Tabla 10.1, “System-wide configuration files” for a complete list), and restore them whenever you reinstall the system.

10.2.3. Requiriendo SSH para conexiones remotas

For SSH to be truly effective, using insecure connection protocols should be prohibited. Otherwise, a user's password may be protected using SSH for one session, only to be captured later while logging in using Telnet. Some services to disable include telnet, rsh, rlogin, and vsftpd.
To make sure these services are not running, type the following commands at a shell prompt:
systemctl stop telnet.service
systemctl stop rsh.service
systemctl stop rlogin.service
systemctl stop vsftpd.service
To disable running these services at startup, type:
systemctl disable telnet.service
systemctl disable rsh.service
systemctl disable rlogin.service
systemctl disable vsftpd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

10.2.4. Using a Key-Based Authentication

To improve the system security even further, you can enforce the key-based authentication by disabling the standard password authentication. To do so, open the /etc/ssh/sshd_config configuration file in a text editor, and change the PasswordAuthentication option as follows:
PasswordAuthentication no
To be able to use ssh, scp, or sftp to connect to the server from a client machine, generate an authorization key pair by following the steps below. Note that keys must be generated for each user separately.
Fedora 17 uses SSH Protocol 2 and RSA keys by default (see Sección 10.1.3, “Protocol Versions” for more information).

Do not generate key pairs as root

If you complete the steps as root, only root will be able to use the keys.

Backup your ~/.ssh/ directory

If you reinstall your system and want to keep previously generated key pair, backup the ~/.ssh/ directory. After reinstalling, copy it back to your home directory. This process can be done for all users on your system, including root.

10.2.4.1. Generar pares de claves

To generate an RSA key pair for version 2 of the SSH protocol, follow these steps:
  1. Generate an RSA key pair by typing the following at a shell prompt:
    ~]$ ssh-keygen -t rsa
    Generating public/private rsa key pair.
    Enter file in which to save the key (/home/john/.ssh/id_rsa):
  2. Press Enter to confirm the default location (that is, ~/.ssh/id_rsa) for the newly created key.
  3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log in to your account.
    After this, you will be presented with a message similar to this:
    Your identification has been saved in /home/john/.ssh/id_rsa.
    Your public key has been saved in /home/john/.ssh/id_rsa.pub.
    The key fingerprint is:
    e7:97:c7:e2:0e:f9:0e:fc:c4:d7:cb:e5:31:11:92:14 john@penguin.example.com
    The key's randomart image is:
    +--[ RSA 2048]----+
    |             E.  |
    |            . .  |
    |             o . |
    |              . .|
    |        S .    . |
    |         + o o ..|
    |          * * +oo|
    |           O +..=|
    |           o*  o.|
    +-----------------+
  4. Change the permissions of the ~/.ssh/ directory:
    ~]$ chmod 755 ~/.ssh
  5. Copy the content of ~/.ssh/id_rsa.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.
  6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:
    ~]$ chmod 644 ~/.ssh/authorized_keys
To generate a DSA key pair for version 2 of the SSH protocol, follow these steps:
  1. Generate a DSA key pair by typing the following at a shell prompt:
    ~]$ ssh-keygen -t dsa
    Generating public/private dsa key pair.
    Enter file in which to save the key (/home/john/.ssh/id_dsa):
  2. Press Enter to confirm the default location (that is, ~/.ssh/id_dsa) for the newly created key.
  3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log in to your account.
    After this, you will be presented with a message similar to this:
    Your identification has been saved in /home/john/.ssh/id_dsa.
    Your public key has been saved in /home/john/.ssh/id_dsa.pub.
    The key fingerprint is:
    81:a1:91:a8:9f:e8:c5:66:0d:54:f5:90:cc:bc:cc:27 john@penguin.example.com
    The key's randomart image is:
    +--[ DSA 1024]----+
    |   .oo*o.        |
    |  ...o Bo        |
    | .. . + o.       |
    |.  .   E o       |
    | o..o   S        |
    |. o= .           |
    |. +              |
    | .               |
    |                 |
    +-----------------+
  4. Change the permissions of the ~/.ssh/ directory:
    ~]$ chmod 775 ~/.ssh
  5. Copy the content of ~/.ssh/id_dsa.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.
  6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:
    ~]$ chmod 644 ~/.ssh/authorized_keys
To generate an RSA key pair for version 1 of the SSH protocol, follow these steps:
  1. Generate an RSA key pair by typing the following at a shell prompt:
    ~]$ ssh-keygen -t rsa1
    Generating public/private rsa1 key pair.
    Enter file in which to save the key (/home/john/.ssh/identity):
  2. Press Enter to confirm the default location (that is, ~/.ssh/identity) for the newly created key.
  3. Enter a passphrase, and confirm it by entering it again when prompted to do so. For security reasons, avoid using the same password as you use to log into your account.
    After this, you will be presented with a message similar to this:
    Your identification has been saved in /home/john/.ssh/identity.
    Your public key has been saved in /home/john/.ssh/identity.pub.
    The key fingerprint is:
    cb:f6:d5:cb:6e:5f:2b:28:ac:17:0c:e4:62:e4:6f:59 john@penguin.example.com
    The key's randomart image is:
    +--[RSA1 2048]----+
    |                 |
    |     . .         |
    |    o o          |
    |     + o E       |
    |    . o S        |
    |       = +   .   |
    |      . = . o . .|
    |       . = o o..o|
    |       .o o  o=o.|
    +-----------------+
  4. Change the permissions of the ~/.ssh/ directory:
    ~]$ chmod 755 ~/.ssh
  5. Copy the content of ~/.ssh/identity.pub into the ~/.ssh/authorized_keys on the machine to which you want to connect, appending it to its end if the file already exists.
  6. Change the permissions of the ~/.ssh/authorized_keys file using the following command:
    ~]$ chmod 644 ~/.ssh/authorized_keys
Refer to Sección 10.2.4.2, “Configuring ssh-agent” for information on how to set up your system to remember the passphrase.

Never share your private key

The private key is for your personal use only, and it is important that you never give it to anyone.

10.2.4.2. Configuring ssh-agent

To store your passphrase so that you do not have to enter it each time you initiate a connection with a remote machine, you can use the ssh-agent authentication agent. To save your passphrase for a certain shell prompt, use the following command:
~]$ ssh-add
Enter passphrase for /home/john/.ssh/id_rsa:
Note that when you log out, your passphrase will be forgotten. You must execute the command each time you log in to a virtual console or a terminal window.

10.3. OpenSSH Clients

Make sure you have relevant packages installed

To connect to an OpenSSH server from a client machine, you must have the openssh-clients and openssh packages installed. Refer to Sección 4.2.4, “Installing Packages” for more information on how to install new packages in Fedora.

10.3.1. Using the ssh Utility

ssh allows you to log in to a remote machine and execute commands there. It is a secure replacement for the rlogin, rsh, and telnet programs.
Similarly to telnet, to log in to a remote machine named penguin.example.com, type the following command at a shell prompt:
~]$ ssh penguin.example.com
This will log you in with the same username you are using on a local machine. If you want to specify a different one, use a command in the ssh username@hostname form. For example, to log in as john, type:
~]$ ssh john@penguin.example.com
The first time you initiate a connection, you will be presented with a message similar to this:
The authenticity of host 'penguin.example.com' can't be established.
RSA key fingerprint is 94:68:3a:3a:bc:f3:9a:9b:01:5d:b3:07:38:e2:11:0c.
Are you sure you want to continue connecting (yes/no)?
Type yes to confirm. You will see a notice that the server has been added to the list of known hosts, and a prompt asking for your password:
Warning: Permanently added 'penguin.example.com' (RSA) to the list of known hosts.
john@penguin.example.com's password:

Updating the host key of an SSH server

If the SSH server's host key changes, the client notifies the user that the connection cannot proceed until the server's host key is deleted from the ~/.ssh/known_hosts file. To do so, open the file in a text editor, and remove a line containing the remote machine name at the beginning. Before doing this, however, contact the system administrator of the SSH server to verify the server is not compromised.
After entering the password, you will be provided with a shell prompt for the remote machine.
Alternatively, the ssh program can be used to execute a command on the remote machine without logging in to a shell prompt. The syntax for that is ssh [username@]hostname command. For example, if you want to execute the whoami command on penguin.example.com, type:
~]$ ssh john@penguin.example.com whoami
john@penguin.example.com's password:
john
After you enter the correct password, the username will be displayed, and you will return to your local shell prompt.

10.3.2. Using the scp Utility

scp can be used to transfer files between machines over a secure, encrypted connection. In its design, it is very similar to rcp.
To transfer a local file to a remote system, use a command in the following form:
scp localfile username@hostname:remotefile
For example, if you want to transfer taglist.vim to a remote machine named penguin.example.com, type the following at a shell prompt:
~]$ scp taglist.vim john@penguin.example.com:.vim/plugin/taglist.vim
john@penguin.example.com's password:
taglist.vim                                   100%  144KB 144.5KB/s   00:00
Multiple files can be specified at once. To transfer the contents of .vim/plugin/ to the same directory on the remote machine penguin.example.com, type the following command:
~]$ scp .vim/plugin/* john@penguin.example.com:.vim/plugin/
john@penguin.example.com's password:
closetag.vim                                  100%   13KB  12.6KB/s   00:00    
snippetsEmu.vim                               100%   33KB  33.1KB/s   00:00    
taglist.vim                                   100%  144KB 144.5KB/s   00:00
To transfer a remote file to the local system, use the following syntax:
scp username@hostname:remotefile localfile
For instance, to download the .vimrc configuration file from the remote machine, type:
~]$ scp john@penguin.example.com:.vimrc .vimrc
john@penguin.example.com's password:
.vimrc                                        100% 2233     2.2KB/s   00:00

10.3.3. Using the sftp Utility

The sftp utility can be used to open a secure, interactive FTP session. In its design, it is similar to ftp except that it uses a secure, encrypted connection.
To connect to a remote system, use a command in the following form:
sftp username@hostname
For example, to log in to a remote machine named penguin.example.com with john as a username, type:
~]$ sftp john@penguin.example.com
john@penguin.example.com's password:
Connected to penguin.example.com.
sftp>
After you enter the correct password, you will be presented with a prompt. The sftp utility accepts a set of commands similar to those used by ftp (see Tabla 10.3, “A selection of available sftp commands”).
Tabla 10.3. A selection of available sftp commands
Comando Descripción
ls [directory] List the content of a remote directory. If none is supplied, a current working directory is used by default.
cd directory Change the remote working directory to directory.
mkdir directory Create a remote directory.
rmdir path Remove a remote directory.
put localfile [remotefile] Transfer localfile to a remote machine.
get remotefile [localfile] Transfer remotefile from a remote machine.

For a complete list of available commands, refer to the sftp man page.

10.4. Más que un Shell seguro

Una interfaz de línea de comandos segura es sólo el inicio de las muchas maneras de usar SSH. Dada una cantidad apropiada de ancho de banda, las sesiones X11 se pueden dirigir por un canal SSH. O usando reenvío TCP/IP, se pueden asignar conexiones de puerto entre sistemas que previamente eran inseguras a canales SSH específicos.

10.4.1. Reenvío por X11

To open an X11 session over an SSH connection, use a command in the following form:
ssh -Y username@hostname
For example, to log in to a remote machine named penguin.example.com with john as a username, type:
~]$ ssh -Y john@penguin.example.com
john@penguin.example.com's password:
Cuando un programa X se ejecuta desde un intérprete de comandos de shell segura, el cliente y el servidor SSH crean un nuevo canal seguro; los datos del programa X se envían a través de ese canal a la máquina cliente de forma transparente.
X11 forwarding can be very useful. For example, X11 forwarding can be used to create a secure, interactive session of the Printer Configuration utility. To do this, connect to the server using ssh and type:
~]$ system-config-printer &
The Printer Configuration Tool will appear, allowing the remote user to safely configure printing on the remote system.

10.4.2. Reenvío del puerto

SSH can secure otherwise insecure TCP/IP protocols via port forwarding. When using this technique, the SSH server becomes an encrypted conduit to the SSH client.
Port forwarding works by mapping a local port on the client to a remote port on the server. SSH can map any port from the server to any port on the client. Port numbers do not need to match for this technique to work.

Using reserved port numbers

La configuración del reenvío de puertos para escuchar puertos bajo 1024 requiere acceso de root.
To create a TCP/IP port forwarding channel which listens for connections on the localhost, use a command in the following form:
ssh -L local-port:remote-hostname:remote-port username@hostname
For example, to check email on a server called mail.example.com using POP3 through an encrypted connection, use the following command:
~]$ ssh -L 1100:mail.example.com:110 mail.example.com
Once the port forwarding channel is in place between the client machine and the mail server, direct a POP3 mail client to use port 1100 on the localhost to check for new email. Any requests sent to port 1100 on the client system will be directed securely to the mail.example.com server.
If mail.example.com is not running an SSH server, but another machine on the same network is, SSH can still be used to secure part of the connection. However, a slightly different command is necessary:
~]$ ssh -L 1100:mail.example.com:110 other.example.com
In this example, POP3 requests from port 1100 on the client machine are forwarded through the SSH connection on port 22 to the SSH server, other.example.com. Then, other.example.com connects to port 110 on mail.example.com to check for new email. Note that when using this technique, only the connection between the client system and other.example.com SSH server is secure.
Port forwarding can also be used to get information securely through network firewalls. If the firewall is configured to allow SSH traffic via its standard port (that is, port 22) but blocks access to other ports, a connection between two hosts using the blocked ports is still possible by redirecting their communication over an established SSH connection.

A connection is only as secure as a client system

Si se utiliza el reenvío de puerto para reenviar conexiones de este modo, cualquier usuario en el sistema cliente puede conectarse a ese servicio. Si el cliente está en riesgo o está comprometido, un agresor puede también acceder a los servicios reenviados.
System administrators concerned about port forwarding can disable this functionality on the server by specifying a No parameter for the AllowTcpForwarding line in /etc/ssh/sshd_config and restarting the sshd service.

10.5. Recursos adicionales

Los proyectos OpenSSH y OpenSSL están en constante desarrollo. La información más actualizada está disponible desde sus sitios web. Las páginas de manuales para las herramientas OpenSSH y OpenSSL también son una buena fuente de información detallada.

10.5.1. Documentación instalada

man ssh
The manual page for ssh containing the full documentation on its usage.
man scp
The manual page for scp containing the full documentation on its usage.
man sftp
The manual page for sftp containing the full documentation on its usage.
man sshd
The manual page for sshd containing the full documentation on its usage.
man ssh-keygen
The manual page for ssh-keygen containing the full documentation on its usage.
man ssh_config
The manual page with full description of available SSH client configuration options.
man sshd_config
The manual page with full description of available SSH daemon configuration options.

10.5.2. Sitios Web útiles

http://www.openssh.com/
The OpenSSH home page containing further documentation, frequently asked questions, links to the mailing lists, bug reports, and other useful resources.
http://www.openssl.org/
The OpenSSL home page containing further documentation, frequently asked questions, links to the mailing lists, and other useful resources.
http://www.freesshd.com/
Another implementation of an SSH server.


[2] A multiplexed connection consists of several signals being sent over a shared, common medium. With SSH, different channels are sent over a common secure connection.

Parte V. Servidores

Este apartado trata varios temas relacionados con servidores como la puesta a punto de un servidor web o la compartición de ficheros en una red.

Tabla de contenidos

11. DHCP Servers
11.1. Motivos para usar el protocolo DHCP
11.2. Configuración de un servidor DHCP
11.2.1. Archivo de configuración
11.2.2. Base de datos de arrendamiento
11.2.3. Iniciar y detener el servidor
11.2.4. Agente de transmisión DHCP
11.3. Configuración de un cliente DHCP
11.4. Configuring a Multihomed DHCP Server
11.4.1. Host Configuration
11.5. DHCP for IPv6 (DHCPv6)
11.6. Recursos adicionales
11.6.1. Documentación instalada
12. DNS Servers
12.1. Introducción a DNS
12.1.1. Zonas de servidores de nombres
12.1.2. Tipos de servidores de nombres
12.1.3. BIND as a Nameserver
12.2. BIND
12.2.1. Configuring the named Service
12.2.2. Editing Zone Files
12.2.3. Using the rndc Utility
12.2.4. Using the dig Utility
12.2.5. Características avanzadas de BIND
12.2.6. Errores comunes que debe evitar
12.2.7. Recursos adicionales
13. Servidores web
13.1. The Apache HTTP Server
13.1.1. New Features
13.1.2. Notable Changes
13.1.3. Updating the Configuration
13.1.4. Running the httpd Service
13.1.5. Editing the Configuration Files
13.1.6. Working with Modules
13.1.7. Setting Up Virtual Hosts
13.1.8. Setting Up an SSL Server
13.1.9. Recursos adicionales
14. Mail Servers
14.1. Protocolos de correo electrónico
14.1.1. Protocolos de transporte de correo
14.1.2. Protocolos de acceso a correo
14.2. Clasificaciones de los programas de correo
14.2.1. Mail Transport Agent
14.2.2. Mail Delivery Agent
14.2.3. Mail User Agent
14.3. Agentes de transporte de correo
14.3.1. Postfix
14.3.2. Sendmail
14.3.3. Fetchmail
14.3.4. Configuración del Agente de Transporte de Correo (MTA)
14.4. Agente de entrega de correo
14.4.1. Configuración de Procmail
14.4.2. Recetas de Procmail
14.5. Agentes de usuario de correo
14.5.1. Comunicación segura
14.6. Recursos adicionales
14.6.1. Documentación instalada
14.6.2. Sitios Web útiles
14.6.3. Libros relacionados
15. Servidores de directorio
15.1. OpenLDAP
15.1.1. Introduction to LDAP
15.1.2. Installing the OpenLDAP Suite
15.1.3. Configuring an OpenLDAP Server
15.1.4. Running an OpenLDAP Server
15.1.5. Configurar un sistema para la autenticación mediante OpenLDAP
15.1.6. Recursos adicionales
16. Servidores de archivos e impresoras
16.1. Samba
16.1.1. Introducción a Samba
16.1.2. Demonios Samba y Servicios relacionados
16.1.3. Conexión a un recurso compartido Samba
16.1.4. Configuración del servidor Samba
16.1.5. Arrancar y detener el Samba
16.1.6. Samba Server Types and the smb.conf File
16.1.7. Modos de seguridad Samba
16.1.8. Bases de datos de información de cuentas Samba
16.1.9. Navegación de red con Samba
16.1.10. Samba con soporte para la impresión con CUPS
16.1.11. Programas de distribución Samba
16.1.12. Recursos adicionales
16.2. FTP
16.2.1. El Protocolo de Transferencia de Archivo
16.2.2. Servidores FTP
16.2.3. Archivos instalados con vsftpd
16.2.4. Iniciar y Detener vsftpd
16.2.5. vsftpd Opciones de configuracion
16.2.6. Recursos adicionales
16.3. Configuración de la impresora
16.3.1. Iniciando la herramienta de configuración de impresora
16.3.2. Iniciando ajustes de impresora
16.3.3. Añadir una impresora local
16.3.4. Agregando una impresora AppSocket/HP JetDirect
16.3.5. Añadir una impresora de red IPP
16.3.6. Agregando una impresora o equipo LPD/LPR
16.3.7. Adding a Samba (SMB) printer
16.3.8. Selección del modelo de impresora
16.3.9. Printing a test page
16.3.10. Modificar impresoras existentes
16.3.11. Recursos adicionales

Capítulo 11. DHCP Servers

DHCP (Dynamic Host Configuration Protocol) es un protocolo de red para asignar automáticamente información TCP/IP a equipos cliente. Cada cliente DHCP se conecta a un servidor DHCP centralizado que devuelve la configuración de red del cliente (incluyendo la dirección IP, la puerta de enlace y los servidores DNS).

11.1. Motivos para usar el protocolo DHCP

DHCP es útil para proporcionar de un modo rápido la configuración de la interfaz de red del cliente. Al configurar el sistema cliente, el administrador puede seleccionar el protocolo DHCP y no especificar una dirección IP, una máscara de red, una puerta de enlace o servidores DNS. El cliente recupera esta información desde el servidor DHCP. DHCP también es útil si un administrador desea cambiar las direcciones IP de muchos sistemas. En lugar de volver a configurar todos los sistemas, puede modificar un archivo de configuración DHCP en el servidor para establecer el nuevo conjunto de direcciones IP. Si los servidores DNS de una organización cambian, los cambios son hechos en el servidor DHCP, no en los clientes DHCP. Una vez que se reinicie la red en los clientes (o se reinicien los clientes), se aplicarán los cambios.
Si una organización tiene un servidor DHCP funcional conectado correctamente a una red, los usuarios de portátiles pueden mover estas máquinas de oficina a oficina.

11.2. Configuración de un servidor DHCP

The dhcp package contains an ISC DHCP server. First, install the package as root:
yum install dhcp
Installing the dhcp package creates a file, /etc/dhcp/dhcpd.conf, which is merely an empty configuration file:
#
# DHCP Server Configuration file.
#   see /usr/share/doc/dhcp*/dhcpd.conf.sample
#   see dhcpd.conf(5) man page
#
The sample configuration file can be found at /usr/share/doc/dhcp-version/dhcpd.conf.sample. You should use this file to help you configure /etc/dhcp/dhcpd.conf, which is explained in detail below.
DHCP also uses the file /var/lib/dhcpd/dhcpd.leases to store the client lease database. Refer to Sección 11.2.2, “Base de datos de arrendamiento” for more information.

11.2.1. Archivo de configuración

The first step in configuring a DHCP server is to create the configuration file that stores the network information for the clients. Use this file to declare options and global options for client systems.
The configuration file can contain extra tabs or blank lines for easier formatting. Keywords are case-insensitive and lines beginning with a hash sign (#) are considered comments.
El archivo de configuración posee dos tipos de información:
  • Parameters — State how to perform a task, whether to perform a task, or what network configuration options to send to the client.
  • Declarations — Describe the topology of the network, describe the clients, provide addresses for the clients, or apply a group of parameters to a group of declarations.
The parameters that start with the keyword option are referred to as options. These options control DHCP options; whereas, parameters configure values that are not optional or control how the DHCP server behaves.
Los parámetros (incluidas las opciones) declarados antes de una sección encerrada entre paréntesis ({ }) se consideran parámetros globales. Los parámetros globales se aplican a todas las secciones situadas debajo de ellos.

Restart the DHCP daemon for the changes to take effect

If the configuration file is changed, the changes do not take effect until the DHCP daemon is restarted. To do so, type the following at a shell prompt as root:
systemctl restart dhcpd.service

Use the omshell command

Instead of changing a DHCP configuration file and restarting the service each time, using the omshell command provides an interactive way to connect to, query, and change the configuration of a DHCP server. By using omshell, all changes can be made while the server is running. For more information on omshell, refer to the omshell man page.
In Ejemplo 11.1, “Subnet declaration”, the routers, subnet-mask, domain-search, domain-name-servers, and time-offset options are used for any host statements declared below it.
Additionally, a subnet can be declared, a subnet declaration must be included for every subnet in the network. If it is not, the DHCP server fails to start.
In this example, there are global options for every DHCP client in the subnet and a range declared. Clients are assigned an IP address within the range.
Ejemplo 11.1. Subnet declaration
subnet 192.168.1.0 netmask 255.255.255.0 {
        option routers                  192.168.1.254;
        option subnet-mask              255.255.255.0;
        option domain-search              "example.com";
        option domain-name-servers       192.168.1.1;
        option time-offset              -18000;     # Eastern Standard Time
	range 192.168.1.10 192.168.1.100;
}

To configure a DHCP server that leases a dynamic IP address to a system within a subnet, modify Ejemplo 11.2, “Range parameter” with your values. It declares a default lease time, maximum lease time, and network configuration values for the clients. This example assigns IP addresses in the range 192.168.1.10 and 192.168.1.100 to client systems.
Ejemplo 11.2. Range parameter
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-search "example.com";
subnet 192.168.1.0 netmask 255.255.255.0 {
   range 192.168.1.10 192.168.1.100;
}

To assign an IP address to a client based on the MAC address of the network interface card, use the hardware ethernet parameter within a host declaration. As demonstrated in Ejemplo 11.3, “Static IP address using DHCP”, the host apex declaration specifies that the network interface card with the MAC address 00:A0:78:8E:9E:AA always receives the IP address 192.168.1.4.
Note that the optional parameter host-name can also be used to assign a host name to the client.
Ejemplo 11.3. Static IP address using DHCP
host apex {
   option host-name "apex.example.com";
   hardware ethernet 00:A0:78:8E:9E:AA;
   fixed-address 192.168.1.4;
}

All subnets that share the same physical network should be declared within a shared-network declaration as shown in Ejemplo 11.4, “Shared-network declaration”. Parameters within the shared-network, but outside the enclosed subnet declarations, are considered to be global parameters. The name of the shared-network must be a descriptive title for the network, such as using the title 'test-lab' to describe all the subnets in a test lab environment.
Ejemplo 11.4. Shared-network declaration
shared-network name {
    option domain-search              "test.redhat.com";
    option domain-name-servers      ns1.redhat.com, ns2.redhat.com;
    option routers                  192.168.0.254;
    more parameters for EXAMPLE shared-network
    subnet 192.168.1.0 netmask 255.255.252.0 {
        parameters for subnet
        range 192.168.1.1 192.168.1.254;
    }
    subnet 192.168.2.0 netmask 255.255.252.0 {
        parameters for subnet
        range 192.168.2.1 192.168.2.254;
    }
}

As demonstrated in Ejemplo 11.5, “Group declaration”, the group declaration is used to apply global parameters to a group of declarations. For example, shared networks, subnets, and hosts can be grouped.
Ejemplo 11.5. Group declaration
group {
   option routers                  192.168.1.254;
   option subnet-mask              255.255.255.0;
   option domain-search              "example.com";
   option domain-name-servers       192.168.1.1;
   option time-offset              -18000;     # Eastern Standard Time
   host apex {
      option host-name "apex.example.com";
      hardware ethernet 00:A0:78:8E:9E:AA;
      fixed-address 192.168.1.4;
   }
   host raleigh {
      option host-name "raleigh.example.com";
      hardware ethernet 00:A1:DD:74:C3:F2;
      fixed-address 192.168.1.6;
   }
}

Using the sample configuration file

The sample configuration file provided can be used as a starting point and custom configuration options can be added to it. To copy it to the proper location, use the following command:
cp /usr/share/doc/dhcp-version-number/dhcpd.conf.sample /etc/dhcp/dhcpd.conf
... where version-number is the DHCP version number.
For a complete list of option statements and what they do, refer to the dhcp-options man page.

11.2.2. Base de datos de arrendamiento

On the DHCP server, the file /var/lib/dhcpd/dhcpd.leases stores the DHCP client lease database. Do not change this file. DHCP lease information for each recently assigned IP address is automatically stored in the lease database. The information includes the length of the lease, to whom the IP address has been assigned, the start and end dates for the lease, and the MAC address of the network interface card that was used to retrieve the lease.
Todas las horas de la base de datos de arrendamiento se expresan según el Tiempo Universal Coordinado (UTC por sus siglas en inglés), no con la hora local.
The lease database is recreated from time to time so that it is not too large. First, all known leases are saved in a temporary lease database. The dhcpd.leases file is renamed dhcpd.leases~ and the temporary lease database is written to dhcpd.leases.
The DHCP daemon could be killed or the system could crash after the lease database has been renamed to the backup file but before the new file has been written. If this happens, the dhcpd.leases file does not exist, but it is required to start the service. Do not create a new lease file. If you do, all old leases are lost which causes many problems. The correct solution is to rename the dhcpd.leases~ backup file to dhcpd.leases and then start the daemon.

11.2.3. Iniciar y detener el servidor

Starting the DHCP server for the first time

When the DHCP server is started for the first time, it fails unless the dhcpd.leases file exists. Use the command touch /var/lib/dhcpd/dhcpd.leases to create the file if it does not exist.
If the same server is also running BIND as a DNS server, this step is not necessary, as starting the named service automatically checks for a dhcpd.leases file.
To start the DHCP service, use the following command:
systemctl start dhcpd.service
To stop the DHCP server, type:
systemctl stop dhcpd.service
By default, the DHCP service does not start at boot time. To configure the daemon to start automatically at boot time, run:
systemctl enable dhcpd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.
If more than one network interface is attached to the system, but the DHCP server should only be started on one of the interfaces, configure the DHCP server to start only on that device. In /etc/sysconfig/dhcpd, add the name of the interface to the list of DHCPDARGS:
# Command line options here
DHCPDARGS=eth0
Esto es útil si tiene una máquina cortafuegos con dos tarjetas de red. Se puede configurar una tarjeta de red como cliente DHCP para recuperar una dirección IP en Internet y la otra tarjeta de red puede utilizarse como servidor DHCP para la red interna detrás del cortafuegos. Su sistema será más seguro si sólo especifica la tarjeta de red conectada a la red interna ya que los usuarios no pueden conectarse al demonio vía Internet.
Other command line options that can be specified in /etc/sysconfig/dhcpd include:
  • -p portnum — Specifies the UDP port number on which dhcpd should listen. The default is port 67. The DHCP server transmits responses to the DHCP clients at a port number one greater than the UDP port specified. For example, if the default port 67 is used, the server listens on port 67 for requests and responses to the client on port 68. If a port is specified here and the DHCP relay agent is used, the same port on which the DHCP relay agent should listen must be specified. Refer to Sección 11.2.4, “Agente de transmisión DHCP” for details.
  • -f — Runs the daemon as a foreground process. This is mostly used for debugging.
  • -d — Logs the DHCP server daemon to the standard error descriptor. This is mostly used for debugging. If this is not specified, the log is written to /var/log/messages.
  • -cf filename — Specifies the location of the configuration file. The default location is /etc/dhcp/dhcpd.conf.
  • -lf filename — Specifies the location of the lease database file. If a lease database file already exists, it is very important that the same file be used every time the DHCP server is started. It is strongly recommended that this option only be used for debugging purposes on non-production machines. The default location is /var/lib/dhcpd/dhcpd.leases.
  • -q — Do not print the entire copyright message when starting the daemon.

11.2.4. Agente de transmisión DHCP

The DHCP Relay Agent (dhcrelay) allows for the relay of DHCP and BOOTP requests from a subnet with no DHCP server on it to one or more DHCP servers on other subnets.
Cuando un cliente DHCP pide información, el agente de transmisión DHCP reenvía la petición a la lista de servidores DHCP especificada cuando se inicia el agente de transmisión DHCP. Cuando un servidor DHCP devuelve una respuesta, la respuesta puede ser broadcast o unicast en la red que ha enviado la petición original.
The DHCP Relay Agent listens for DHCP requests on all interfaces unless the interfaces are specified in /etc/sysconfig/dhcrelay with the INTERFACES directive.
To start the DHCP Relay Agent, use the following command:
systemctl start dhcrelay.service

11.3. Configuración de un cliente DHCP

To configure a DHCP client manually, modify the /etc/sysconfig/network file to enable networking and the configuration file for each network device in the /etc/sysconfig/network-scripts directory. In this directory, each device should have a configuration file named ifcfg-eth0, where eth0 is the network device name.
The /etc/sysconfig/network-scripts/ifcfg-eth0 file should contain the following lines:
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
Necesita un archivo de configuración para cada dispositivo que desee configurar para el uso de DHCP.
Otras opciones para el script de la red incluyen:
  • DHCP_HOSTNAME — Only use this option if the DHCP server requires the client to specify a hostname before receiving an IP address. (The DHCP server daemon in Fedora does not support this feature.)
  • PEERDNS=answer , where answer is one of the following:
    • yes — Modify /etc/resolv.conf with information from the server. If using DHCP, then yes is the default.
    • no — Do not modify /etc/resolv.conf.

Advanced configurations

For advanced configurations of client DHCP options such as protocol timing, lease requirements and requests, dynamic DNS support, aliases, as well as a wide variety of values to override, prepend, or append to client-side configurations, refer to the dhclient and dhclient.conf man pages.

11.4. Configuring a Multihomed DHCP Server

A multihomed DHCP server serves multiple networks, that is, multiple subnets. The examples in these sections detail how to configure a DHCP server to serve multiple networks, select which network interfaces to listen on, and how to define network settings for systems that move networks.
Before making any changes, back up the existing /etc/sysconfig/dhcpd and /etc/dhcp/dhcpd.conf files.
The DHCP daemon listens on all network interfaces unless otherwise specified. Use the /etc/sysconfig/dhcpd file to specify which network interfaces the DHCP daemon listens on. The following /etc/sysconfig/dhcpd example specifies that the DHCP daemon listens on the eth0 and eth1 interfaces:
DHCPDARGS="eth0 eth1";
If a system has three network interfaces cards -- eth0, eth1, and eth2 -- and it is only desired that the DHCP daemon listens on eth0, then only specify eth0 in /etc/sysconfig/dhcpd:
DHCPDARGS="eth0";
The following is a basic /etc/dhcp/dhcpd.conf file, for a server that has two network interfaces, eth0 in a 10.0.0.0/24 network, and eth1 in a 172.16.0.0/24 network. Multiple subnet declarations allow different settings to be defined for multiple networks:
default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 10.0.0.1;
	range 10.0.0.5 10.0.0.15;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 172.16.0.1;
	range 172.16.0.5 172.16.0.15;
}
subnet 10.0.0.0 netmask 255.255.255.0;
A subnet declaration is required for every network your DHCP server is serving. Multiple subnets require multiple subnet declarations. If the DHCP server does not have a network interface in a range of a subnet declaration, the DHCP server does not serve that network.
If there is only one subnet declaration, and no network interfaces are in the range of that subnet, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:
dhcpd: No subnet declaration for eth0 (0.0.0.0).
dhcpd: ** Ignoring requests on eth0.  If this is not what
dhcpd:    you want, please write a subnet declaration
dhcpd:    in your dhcpd.conf file for the network segment
dhcpd:    to which interface eth1 is attached. **
dhcpd:
dhcpd:
dhcpd: Not configured to listen on any interfaces!
option subnet-mask 255.255.255.0;
The option subnet-mask option defines a subnet mask, and overrides the netmask value in the subnet declaration. In simple cases, the subnet and netmask values are the same.
option routers 10.0.0.1;
The option routers option defines the default gateway for the subnet. This is required for systems to reach internal networks on a different subnet, as well as external networks.
range 10.0.0.5 10.0.0.15;
The range option specifies the pool of available IP addresses. Systems are assigned an address from the range of specified IP addresses.
For further information, refer to the dhcpd.conf(5) man page.

Do not use alias interfaces

Alias interfaces are not supported by DHCP. If an alias interface is the only interface, in the only subnet specified in /etc/dhcp/dhcpd.conf, the DHCP daemon fails to start.

11.4.1. Host Configuration

Before making any changes, back up the existing /etc/sysconfig/dhcpd and /etc/dhcp/dhcpd.conf files.
Configuring a single system for multiple networks
The following /etc/dhcp/dhcpd.conf example creates two subnets, and configures an IP address for the same system, depending on which network it connects to:
default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 10.0.0.1;
	range 10.0.0.5 10.0.0.15;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 172.16.0.1;
	range 172.16.0.5 172.16.0.15;
}
host example0 {
	hardware ethernet 00:1A:6B:6A:2E:0B;
	fixed-address 10.0.0.20;
}
host example1 {
	hardware ethernet 00:1A:6B:6A:2E:0B;
	fixed-address 172.16.0.20;
}
host example0
The host declaration defines specific parameters for a single system, such as an IP address. To configure specific parameters for multiple hosts, use multiple host declarations.
Most DHCP clients ignore the name in host declarations, and as such, this name can anything, as long as it is unique to other host declarations. To configure the same system for multiple networks, use a different name for each host declaration, otherwise the DHCP daemon fails to start. Systems are identified by the hardware ethernet option, not the name in the host declaration.
hardware ethernet 00:1A:6B:6A:2E:0B;
The hardware ethernet option identifies the system. To find this address, run the ip link command.
fixed-address 10.0.0.20;
The fixed-address option assigns a valid IP address to the system specified by the hardware ethernet option. This address must be outside the IP address pool specified with the range option.
If option statements do not end with a semicolon, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:
/etc/dhcp/dhcpd.conf line 20: semicolon expected.
dhcpd: }
dhcpd: ^
dhcpd: /etc/dhcp/dhcpd.conf line 38: unexpected end of file
dhcpd:
dhcpd: ^
dhcpd: Configuration file errors encountered -- exiting
Configuring systems with multiple network interfaces
The following host declarations configure a single system, that has multiple network interfaces, so that each interface receives the same IP address. This configuration will not work if both network interfaces are connected to the same network at the same time:
host interface0 {
	hardware ethernet 00:1a:6b:6a:2e:0b;
	fixed-address 10.0.0.18;
}
host interface1 {
	hardware ethernet 00:1A:6B:6A:27:3A;
	fixed-address 10.0.0.18;
}
For this example, interface0 is the first network interface, and interface1 is the second interface. The different hardware ethernet options identify each interface.
If such a system connects to another network, add more host declarations, remembering to:
  • assign a valid fixed-address for the network the host is connecting to.
  • make the name in the host declaration unique.
When a name given in a host declaration is not unique, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:
dhcpd: /etc/dhcp/dhcpd.conf line 31: host interface0: already exists
dhcpd: }
dhcpd: ^
dhcpd: Configuration file errors encountered -- exiting
This error was caused by having multiple host interface0 declarations defined in /etc/dhcp/dhcpd.conf.

11.5. DHCP for IPv6 (DHCPv6)

The ISC DHCP includes support for IPv6 (DHCPv6) since the 4.x release with a DHCPv6 server, client and relay agent functionality. The server, client and relay agents support both IPv4 and IPv6. However, the client and the server can only manage one protocol at a time — for dual support they must be started separately for IPv4 and IPv6.
The DHCPv6 server configuration file can be found at /etc/dhcp/dhcpd6.conf.
The sample server configuration file can be found at /usr/share/doc/dhcp-version/dhcpd6.conf.sample.
To start the DHCPv6 service, use the following command:
systemctl start dhcpd6.service
A simple DHCPv6 server configuration file can look like this:
subnet6 2001:db8:0:1::/64 {
        range6 2001:db8:0:1::129 2001:db8:0:1::254;
        option dhcp6.name-servers fec0:0:0:1::1;
        option dhcp6.domain-search "domain.example";
}

11.6. Recursos adicionales

For additional information, refer to The DHCP Handbook; Ralph Droms and Ted Lemon; 2003 or the following resources.

11.6.1. Documentación instalada

  • dhcpd man page — Describes how the DHCP daemon works.
  • dhcpd.conf man page — Explains how to configure the DHCP configuration file; includes some examples.
  • dhcpd.leases man page — Describes a persistent database of leases.
  • dhcp-options man page — Explains the syntax for declaring DHCP options in dhcpd.conf; includes some examples.
  • dhcrelay man page — Explains the DHCP Relay Agent and its configuration options.
  • /usr/share/doc/dhcp-version/ — Contains sample files, README files, and release notes for current versions of the DHCP service.

Capítulo 12. DNS Servers

DNS (Sistema de nombres de dominio), también conocidos como nameserver, es un sistema de red que asocia los nombres de las computadores con su dirección de IP. Para los usuarios, esto tiene una ventaja ya que se puede referir a una maquina por su nombre en lugar de tener que recordar su dirección numérica. Para un administrador de sistemas, usar el servidor de nombres le permite cambiar la dirección de IP de una dispositivo sin afectar las consultas basadas en el nombre, o decidir que maquinas pueden manejar estas consultas.

12.1. Introducción a DNS

El servidor de DNS se implimenta utilizando uno o mas servidores centralizados que son autoritarios para algunos dominios. Cuando un cliente requiere información de un servidor de nombre, el usualmente se conecta por el puerto 53. El servidor de nombre intenta resolver el nombre solicitado. Si el no posee una respuesta autoritaria, o no tiene la respuesta almacenada en su cache por una consulta anterior, el consulta otro servidor de nombre, llamando root nameservers, para determinar cual es servidor de nombre autoritario para el nombre consultado, luego consulta para obtener el nombre solicitado.

12.1.1. Zonas de servidores de nombres

In a DNS server such as BIND, all information is stored in basic data elements called resource records (RR). The resource record is usually a fully qualified domain name (FQDN) of a host, and is broken down into multiple sections organized into a tree-like hierarchy. This hierarchy consists of a main trunk, primary branches, secondary branches, and so on. The following is an example of a resource record:
bob.sales.example.com
Each level of the hierarchy is divided by a period (that is, .). In the example above, com defines the top-level domain, example its subdomain, and sales the subdomain of example. In this case, bob identifies a resource record that is part of the sales.example.com domain. With the exception of the part furthest to the left (that is, bob), each of these sections is called a zone and defines a specific namespace.
Zones are defined on authoritative nameservers through the use of zone files, which contain definitions of the resource records in each zone. Zone files are stored on primary nameservers (also called master nameservers), where changes are made to the files, and secondary nameservers (also called slave nameservers), which receive zone definitions from the primary nameservers. Both primary and secondary nameservers are authoritative for the zone and look the same to clients. Depending on the configuration, any nameserver can also serve as a primary or secondary server for multiple zones at the same time.

12.1.2. Tipos de servidores de nombres

There are two nameserver configuration types:
authoritative
Authoritative nameservers answer to resource records that are part of their zones only. This category includes both primary (master) and secondary (slave) nameservers.
recursive
Recursive nameservers offer resolution services, but they are not authoritative for any zone. Answers for all resolutions are cached in a memory for a fixed period of time, which is specified by the retrieved resource record.
Although a nameserver can be both authoritative and recursive at the same time, it is recommended not to combine the configuration types. To be able to perform their work, authoritative servers should be available to all clients all the time. On the other hand, since the recursive lookup takes far more time than authoritative responses, recursive servers should be available to a restricted number of clients only, otherwise they are prone to distributed denial of service (DDoS) attacks.

12.1.3. BIND as a Nameserver

BIND consists of a set of DNS-related programs. It contains a monolithic nameserver called named, an administration utility called rndc, and a debugging tool called dig. Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

12.2. BIND

Este capitulo cubre BIND (Berkeley Internet Name Domain), el servidor de DNS incluido en Fedora. Se enfoca en la estructura y la configuración de sus archivos, y describe como administrarlo tanto local como remoto.

12.2.1. Configuring the named Service

When the named service is started, it reads the configuration from the files as described in Tabla 12.1, “The named service configuration files”.
Tabla 12.1. The named service configuration files
Path Descripción
/etc/named.conf The main configuration file.
/etc/named/ An auxiliary directory for configuration files that are included in the main configuration file.

The configuration file consists of a collection of statements with nested options surrounded by opening and closing curly brackets (that is, { and }). Note that when editing the file, you have to be careful not to make any syntax error, otherwise the named service will not start. A typical /etc/named.conf file is organized as follows:
statement-1 ["statement-1-name"] [statement-1-class] {
  option-1;
  option-2;
  option-N;
};
statement-2 ["statement-2-name"] [statement-2-class] {
  option-1;
  option-2;
  option-N;
};
statement-N ["statement-N-name"] [statement-N-class] {
  option-1;
  option-2;
  option-N;
};

Running BIND in a chroot environment

If you have installed the bind-chroot package, the BIND service will run in the /var/named/chroot environment. In that case, the initialization script will mount the above configuration files using the mount --bind command, so that you can manage the configuration outside this environment.

12.2.1.1. Tipos de declaraciones comúnes

The following types of statements are commonly used in /etc/named.conf:
acl
The acl (Access Control List) statement allows you to define groups of hosts, so that they can be permitted or denied access to the nameserver. It takes the following form:
acl acl-name {
  match-element;
  ...
};
The acl-name statement name is the name of the access control list, and the match-element option is usually an individual IP address (such as 10.0.1.1) or a CIDR network notation (for example, 10.0.1.0/24). For a list of already defined keywords, see Tabla 12.2, “Predefined access control lists”.
Tabla 12.2. Predefined access control lists
Keyword Descripción
any Matches every IP address.
localhost Matches any IP address that is in use by the local system.
localnets Matches any IP address on any network to which the local system is connected.
none Does not match any IP address.

The acl statement can be especially useful with conjunction with other statements such as options. Ejemplo 12.1, “Using acl in conjunction with options” defines two access control lists, black-hats and red-hats, and adds black-hats on the blacklist while granting red-hats a normal access.
Ejemplo 12.1. Using acl in conjunction with options
acl black-hats {
  10.0.2.0/24;
  192.168.0.0/24;
  1234:5678::9abc/24;
};
acl red-hats {
  10.0.1.0/24;
};
options {
  blackhole { black-hats; };
  allow-query { red-hats; };
  allow-query-cache { red-hats; };
};

include
The include statement allows you to include files in the /etc/named.conf, so that potentially sensitive data can be placed in a separate file with restricted permissions. It takes the following form:
include "file-name"
The file-name statement name is an absolute path to a file.
Ejemplo 12.2. Including a file to /etc/named.conf
include "/etc/named.rfc1912.zones";

options
The options statement allows you to define global server configuration options as well as to set defaults for other statements. It can be used to specify the location of the named working directory, the types of queries allowed, and much more. It takes the following form:
options {
  option;
  ...
};
For a list of frequently used option directives, see Tabla 12.3, “Commonly used options” below.
Tabla 12.3. Commonly used options
Opciones Descripción
allow-query Specifies which hosts are allowed to query the nameserver for authoritative resource records. It accepts an access control lists, a collection of IP addresses, or networks in the CIDR notation. All hosts are allowed by default.
allow-query-cache Specifies which hosts are allowed to query the nameserver for non-authoritative data such as recursive queries. Only localhost and localnets are allowed by default.
blackhole Specifies which hosts are not allowed to query the nameserver. This option should be used when particular host or network floods the server with requests. The default option is none.
directory Specifies a working directory for the named service. The default option is /var/named/.
dnssec-enable Specifies whether to return DNSSEC related resource records. The default option is yes.
dnssec-validation Specifies whether to prove that resource records are authentic via DNSSEC. The default option is yes.
forwarders Specifies a list of valid IP addresses for nameservers to which the requests should be forwarded for resolution.
forward
Specifies the behavior of the forwarders directive. It accepts the following options:
  • first — The server will query the nameservers listed in the forwarders directive before attempting to resolve the name on its own.
  • only — When unable to query the nameservers listed in the forwarders directive, the server will not attempt to resolve the name on its own.
listen-on Specifies the IPv4 network interface on which to listen for queries. On a DNS server that also acts as a gateway, you can use this option to answer queries originating from a single network only. All IPv4 interfaces are used by default.
listen-on-v6 Specifies the IPv6 network interface on which to listen for queries. On a DNS server that also acts as a gateway, you can use this option to answer queries originating from a single network only. All IPv6 interfaces are used by default.
max-cache-size Specifies the maximum amount of memory to be used for server caches. When the limit is reached, the server causes records to expire prematurely so that the limit is not exceeded. In a server with multiple views, the limit applies separately to the cache of each view. The default option is 32M.
notify
Specifies whether to notify the secondary nameservers when a zone is updated. It accepts the following options:
  • yes — The server will notify all secondary nameservers.
  • no — The server will not notify any secondary nameserver.
  • master-only — The server will notify primary server for the zone only.
  • explicit — The server will notify only the secondary servers that are specified in the also-notify list within a zone statement.
pid-file Specifies the location of the process ID file created by the named service.
recursion Specifies whether to act as a recursive server. The default option is yes.
statistics-file Specifies an alternate location for statistics files. The /var/named/named.stats file is used by default.

Restrict recursive servers to selected clients only

To prevent distributed denial of service (DDoS) attacks, it is recommended that you use the allow-query-cache option to restrict recursive DNS services for a particular subset of clients only.
Refer to the BIND 9 Administrator Reference Manual referenced in Sección 12.2.7.1, “Documentación instalada”, and the named.conf manual page for a complete list of available options.
Ejemplo 12.3. Using the options statement
options {
  allow-query       { localhost; };
  listen-on port    53 { 127.0.0.1; };
  listen-on-v6 port 53 { ::1; };
  max-cache-size    256M;
  directory         "/var/named";
  statistics-file   "/var/named/data/named_stats.txt";

  recursion         yes;
  dnssec-enable     yes;
  dnssec-validation yes;
};

zone
The zone statement allows you to define the characteristics of a zone, such as the location of its configuration file and zone-specific options, and can be used to override the global options statements. It takes the following form:
zone zone-name [zone-class] {
  option;
  ...
};
The zone-name attribute is the name of the zone, zone-class is the optional class of the zone, and option is a zone statement option as described in Tabla 12.4, “Commonly used options”.
The zone-name attribute is particularly important, as it is the default value assigned for the $ORIGIN directive used within the corresponding zone file located in the /var/named/ directory. The named daemon appends the name of the zone to any non-fully qualified domain name listed in the zone file. For example, if a zone statement defines the namespace for example.com, use example.com as the zone-name so that it is placed at the end of hostnames within the example.com zone file.
For more information about zone files, refer to Sección 12.2.2, “Editing Zone Files”.
Tabla 12.4. Commonly used options
Opciones Descripción
allow-query Specifies which clients are allowed to request information about this zone. This option overrides global allow-query option. All query requests are allowed by default.
allow-transfer Specifies which secondary servers are allowed to request a transfer of the zone's information. All transfer requests are allowed by default.
allow-update
Specifies which hosts are allowed to dynamically update information in their zone. The default option is to deny all dynamic update requests.
Note that you should be careful when allowing hosts to update information about their zone. Do not set IP addresses in this option unless the server is in the trusted network. Instead, use TSIG key as described in Sección 12.2.5.3, “Transaction SIGnatures (TSIG)”.
file Specifies the name of the file in the named working directory that contains the zone's configuration data.
masters Specifies from which IP addresses to request authoritative zone information. This option is used only if the zone is defined as type slave.
notify
Specifies whether to notify the secondary nameservers when a zone is updated. It accepts the following options:
  • yes — The server will notify all secondary nameservers.
  • no — The server will not notify any secondary nameserver.
  • master-only — The server will notify primary server for the zone only.
  • explicit — The server will notify only the secondary servers that are specified in the also-notify list within a zone statement.
type
Specifies the zone type. It accepts the following options:
  • delegation-only — Enforces the delegation status of infrastructure zones such as COM, NET, or ORG. Any answer that is received without an explicit or implicit delegation is treated as NXDOMAIN. This option is only applicable in TLDs or root zone files used in recursive or caching implementations.
  • forward — Forwards all requests for information about this zone to other nameservers.
  • hint — A special type of zone used to point to the root nameservers which resolve queries when a zone is not otherwise known. No configuration beyond the default is necessary with a hint zone.
  • master — Designates the nameserver as authoritative for this zone. A zone should be set as the master if the zone's configuration files reside on the system.
  • slave — Designates the nameserver as a slave server for this zone. Master server is specified in masters directive.

Most changes to the /etc/named.conf file of a primary or secondary nameserver involve adding, modifying, or deleting zone statements, and only a small subset of zone statement options is usually needed for a nameserver to work efficiently.
In Ejemplo 12.4, “A zone statement for a primary nameserver”, the zone is identified as example.com, the type is set to master, and the named service is instructed to read the /var/named/example.com.zone file. It also allows only a secondary nameserver (192.168.0.2) to transfer the zone.
Ejemplo 12.4. A zone statement for a primary nameserver
zone "example.com" IN {
  type master;
  file "example.com.zone";
  allow-transfer { 192.168.0.2; };
};

A secondary server's zone statement is slightly different. The type is set to slave, and the masters directive is telling named the IP address of the master server.
In Ejemplo 12.5, “A zone statement for a secondary nameserver”, the named service is configured to query the primary server at the 192.168.0.1 IP address for information about the example.com zone. The received information is then saved to the /var/named/slaves/example.com.zone file. Note that you have to put all slave zones to /var/named/slaves directory, otherwise the service will fail to transfer the zone.
Ejemplo 12.5. A zone statement for a secondary nameserver
zone "example.com" {
  type slave;
  file "slaves/example.com.zone";
  masters { 192.168.0.1; };
};

12.2.1.2. Otros tipos de declaraciones

The following types of statements are less commonly used in /etc/named.conf:
controls
The controls statement allows you to configure various security requirements necessary to use the rndc command to administer the named service.
Refer to Sección 12.2.3, “Using the rndc Utility” for more information on the rndc utility and its usage.
key
The key statement allows you to define a particular key by name. Keys are used to authenticate various actions, such as secure updates or the use of the rndc command. Two options are used with key:
  • algorithm algorithm-name — The type of algorithm to be used (for example, hmac-md5).
  • secret "key-value" — The encrypted key.
Refer to Sección 12.2.3, “Using the rndc Utility” for more information on the rndc utility and its usage.
logging
The logging statement allows you to use multiple types of logs, so called channels. By using the channel option within the statement, you can construct a customized type of log with its own file name (file), size limit (size), versioning (version), and level of importance (severity). Once a customized channel is defined, a category option is used to categorize the channel and begin logging when the named service is restarted.
By default, named sends standard messages to the rsyslog daemon, which places them in /var/log/messages. Several standard channels are built into BIND with various severity levels, such as default_syslog (which handles informational logging messages) and default_debug (which specifically handles debugging messages). A default category, called default, uses the built-in channels to do normal logging without any special configuration.
Customizing the logging process can be a very detailed process and is beyond the scope of this chapter. For information on creating custom BIND logs, refer to the BIND 9 Administrator Reference Manual referenced in Sección 12.2.7.1, “Documentación instalada”.
server
The server statement allows you to specify options that affect how the named service should respond to remote nameservers, especially with regard to notifications and zone transfers.
The transfer-format option controls the number of resource records that are sent with each message. It can be either one-answer (only one resource record), or many-answers (multiple resource records). Note that while the many-answers option is more efficient, it is not supported by older versions of BIND.
trusted-keys
The trusted-keys statement allows you to specify assorted public keys used for secure DNS (DNSSEC). Refer to Sección 12.2.5.4, “DNS Security Extensions (DNSSEC)” for more information on this topic.
view
The view statement allows you to create special views depending upon which network the host querying the nameserver is on. This allows some hosts to receive one answer regarding a zone while other hosts receive totally different information. Alternatively, certain zones may only be made available to particular trusted hosts while non-trusted hosts can only make queries for other zones.
Multiple views can be used as long as their names are unique. The match-clients option allows you to specify the IP addresses that apply to a particular view. If the options statement is used within a view, it overrides the already configured global options. Finally, most view statements contain multiple zone statements that apply to the match-clients list.
Note that the order in which the view statements are listed is important, as the first statement that matches a particular client's IP address is used. For more information on this topic, refer to Sección 12.2.5.1, “Vistas múltiples”.

12.2.1.3. Etiquetas de comentarios

Additionally to statements, the /etc/named.conf file can also contain comments. Comments are ignored by the named service, but can prove useful when providing additional information to a user. The following are valid comment tags:
//
Any text after the // characters to the end of the line is considered a comment. For example:
notify yes;  // notify all secondary nameservers
#
Any text after the # character to the end of the line is considered a comment. For example:
notify yes;  # notify all secondary nameservers
/* and */
Any block of text enclosed in /* and */ is considered a comment. For example:
notify yes;  /* notify all secondary nameservers */

12.2.2. Editing Zone Files

As outlined in Sección 12.1.1, “Zonas de servidores de nombres”, zone files contain information about a namespace. They are stored in the named working directory located in /var/named/ by default, and each zone file is named according to the file option in the zone statement, usually in a way that relates to the domain in question and identifies the file as containing zone data, such as example.com.zone.
Tabla 12.5. The named service zone files
Path Descripción
/var/named/ The working directory for the named service. The nameserver is not allowed to write to this directory.
/var/named/slaves/ The directory for secondary zones. This directory is writable by the named service.
/var/named/dynamic/ The directory for other files, such as dynamic DNS (DDNS) zones or managed DNSSEC keys. This directory is writable by the named service.
/var/named/data/ The directory for various statistics and debugging files. This directory is writable by the named service.

A zone file consists of directives and resource records. Directives tell the nameserver to perform tasks or apply special settings to the zone, resource records define the parameters of the zone and assign identities to individual hosts. While the directives are optional, the resource records are required in order to provide name service to a zone.
Todas las directivas y registros de recursos deberían ir en sus propias líneas individuales.

12.2.2.1. Common Directives

Directives begin with the dollar sign character (that is, $) followed by the name of the directive, and usually appear at the top of the file. The following directives are commonly used in zone files:
$INCLUDE
The $INCLUDE directive allows you to include another file at the place where it appears, so that other zone settings can be stored in a separate zone file.
Ejemplo 12.6. Using the $INCLUDE directive
$INCLUDE /var/named/penguin.example.com

$ORIGIN
The $ORIGIN directive allows you to append the domain name to unqualified records, such as those with the hostname only. Note that the use of this directive is not necessary if the zone is specified in /etc/named.conf, since the zone name is used by default.
In Ejemplo 12.7, “Using the $ORIGIN directive”, any names used in resource records that do not end in a trailing period (that is, the . character) are appended with example.com.
Ejemplo 12.7. Using the $ORIGIN directive
$ORIGIN example.com.

$TTL
The $TTL directive allows you to set the default Time to Live (TTL) value for the zone, that is, how long is a zone record valid. Each resource record can contain its own TTL value, which overrides this directive.
Cuando se decide aumentar este valor, permite a los servidores de nombres remotos hacer caché a la información de zona para un período más largo de tiempo, reduciendo el número de consultas para la zona y alargando la cantidad de tiempo requerido para proliferar cambios de registros de recursos.
Ejemplo 12.8. Using the $TTL directive
$TTL 1D

12.2.2.2. Common Resource Records

The following resource records are commonly used in zone files:
A
The Address record specifies an IP address to be assigned to a name. It takes the following form:
hostname IN A IP-address
If the hostname value is omitted, the record will point to the last specified hostname.
In Ejemplo 12.9, “Using the A resource record”, the requests for server1.example.com are pointed to 10.0.1.3 or 10.0.1.5.
Ejemplo 12.9. Using the A resource record
server1  IN  A  10.0.1.3
         IN  A  10.0.1.5

CNAME
The Canonical Name record maps one name to another. Because of this, this type of record is sometimes referred to as an alias record. It takes the following form:
alias-name IN CNAME real-name
CNAME records are most commonly used to point to services that use a common naming scheme, such as www for Web servers. However, there are multiple restrictions for their usage:
  • CNAME records should not point to other CNAME records. This is mainly to avoid possible infinite loops.
  • CNAME records should not contain other resource record types (such as A, NS, MX, etc.). The only exception are DNSSEC related records (that is, RRSIG, NSEC, etc.) when the zone is signed.
  • Other resource record that point to the fully qualified domain name (FQDN) of a host (that is, NS, MX, PTR) should not point to a CNAME record.
In Ejemplo 12.10, “Using the CNAME resource record”, the A record binds a hostname to an IP address, while the CNAME record points the commonly used www hostname to it.
Ejemplo 12.10. Using the CNAME resource record
server1  IN  A      10.0.1.5
www      IN  CNAME  server1

MX
The Mail Exchange record specifies where the mail sent to a particular namespace controlled by this zone should go. It takes the following form:
IN MX preference-value email-server-name
The email-server-name is a fully qualified domain name (FQDN). The preference-value allows numerical ranking of the email servers for a namespace, giving preference to some email systems over others. The MX resource record with the lowest preference-value is preferred over the others. However, multiple email servers can possess the same value to distribute email traffic evenly among them.
In Ejemplo 12.11, “Using the MX resource record”, the first mail.example.com email server is preferred to the mail2.example.com email server when receiving email destined for the example.com domain.
Ejemplo 12.11. Using the MX resource record
example.com.  IN  MX  10  mail.example.com.
              IN  MX  20  mail2.example.com.

NS
The Nameserver record announces authoritative nameservers for a particular zone. It takes the following form:
IN NS nameserver-name
The nameserver-name should be a fully qualified domain name (FQDN). Note that when two nameservers are listed as authoritative for the domain, it is not important whether these nameservers are secondary nameservers, or if one of them is a primary server. They are both still considered authoritative.
Ejemplo 12.12. Using the NS resource record
IN  NS  dns1.example.com.
IN  NS  dns2.example.com.

PTR
The Pointer record points to another part of the namespace. It takes the following form:
last-IP-digit IN PTR FQDN-of-system
The last-IP-digit directive is the last number in an IP address, and the FQDN-of-system is a fully qualified domain name (FQDN).
PTR records are primarily used for reverse name resolution, as they point IP addresses back to a particular name. Refer to Sección 12.2.2.4.2, “A Reverse Name Resolution Zone File” for more examples of PTR records in use.
SOA
The Start of Authority record announces important authoritative information about a namespace to the nameserver. Located after the directives, it is the first resource record in a zone file. It takes the following form:
@  IN  SOA  primary-name-server hostmaster-email (
       serial-number
       time-to-refresh
       time-to-retry
       time-to-expire
       minimum-TTL )
The directives are as follows:
  • The @ symbol places the $ORIGIN directive (or the zone's name if the $ORIGIN directive is not set) as the namespace being defined by this SOA resource record.
  • The primary-name-server directive is the hostname of the primary nameserver that is authoritative for this domain.
  • The hostmaster-email directive is the email of the person to contact about the namespace.
  • The serial-number directive is a numerical value incremented every time the zone file is altered to indicate it is time for the named service to reload the zone.
  • The time-to-refresh directive is the numerical value secondary nameservers use to determine how long to wait before asking the primary nameserver if any changes have been made to the zone.
  • The time-to-retry directive is a numerical value used by secondary nameservers to determine the length of time to wait before issuing a refresh request in the event that the primary nameserver is not answering. If the primary server has not replied to a refresh request before the amount of time specified in the time-to-expire directive elapses, the secondary servers stop responding as an authority for requests concerning that namespace.
  • In BIND 4 and 8, the minimum-TTL directive is the amount of time other nameservers cache the zone's information. In BIND 9, it defines how long negative answers are cached for. Caching of negative answers can be set to a maximum of 3 hours (that is, 3H).
When configuring BIND, all times are specified in seconds. However, it is possible to use abbreviations when specifying units of time other than seconds, such as minutes (M), hours (H), days (D), and weeks (W). Tabla 12.6, “Segundos comparados a otras unidades de tiempo” shows an amount of time in seconds and the equivalent time in another format.
Tabla 12.6. Segundos comparados a otras unidades de tiempo
Segundos Otras unidades de tiempo
60 1M
1800 30M
3600 1H
10800 3H
21600 6H
43200 12H
86400 1D
259200 3D
604800 1W
31536000 365D

Ejemplo 12.13. Using the SOA resource record
@  IN  SOA  dns1.example.com.  hostmaster.example.com. (
       2001062501  ; serial
       21600       ; refresh after 6 hours
       3600        ; retry after 1 hour
       604800      ; expire after 1 week
       86400 )     ; minimum TTL of 1 day

12.2.2.3. Etiquetas de comentarios

Additionally to resource records and directives, a zone file can also contain comments. Comments are ignored by the named service, but can prove useful when providing additional information to the user. Any text after the semicolon character (that is, ;) to the end of the line is considered a comment. For example:
   604800  ; expire after 1 week

12.2.2.4. Ejemplo de uso

The following examples show the basic usage of zone files.
12.2.2.4.1. A Simple Zone File
Ejemplo 12.14, “A simple zone file” demonstrates the use of standard directives and SOA values.
Ejemplo 12.14. A simple zone file
$ORIGIN example.com.
$TTL 86400
@         IN  SOA  dns1.example.com.  hostmaster.example.com. (
              2001062501  ; serial
              21600       ; refresh after 6 hours
              3600        ; retry after 1 hour
              604800      ; expire after 1 week
              86400 )     ; minimum TTL of 1 day
;
;
          IN  NS     dns1.example.com.
          IN  NS     dns2.example.com.
dns1      IN  A      10.0.1.1
          IN  AAAA   aaaa:bbbb::1
dns2      IN  A      10.0.1.2
          IN  AAAA   aaaa:bbbb::2
;
;
@         IN  MX     10  mail.example.com.
          IN  MX     20  mail2.example.com.
mail      IN  A      10.0.1.5
          IN  AAAA   aaaa:bbbb::5
mail2     IN  A      10.0.1.6
          IN  AAAA   aaaa:bbbb::6
;
;
; This sample zone file illustrates sharing the same IP addresses
; for multiple services:
;
services  IN  A      10.0.1.10
          IN  AAAA   aaaa:bbbb::10
          IN  A      10.0.1.11
          IN  AAAA   aaaa:bbbb::11

ftp       IN  CNAME  services.example.com.
www       IN  CNAME  services.example.com.
;
;

In this example, the authoritative nameservers are set as dns1.example.com and dns2.example.com, and are tied to the 10.0.1.1 and 10.0.1.2 IP addresses respectively using the A record.
The email servers configured with the MX records point to mail and mail2 via A records. Since these names do not end in a trailing period (that is, the . character), the $ORIGIN domain is placed after them, expanding them to mail.example.com and mail2.example.com.
Services available at the standard names, such as www.example.com (WWW), are pointed at the appropriate servers using the CNAME record.
This zone file would be called into service with a zone statement in the /etc/named.conf similar to the following:
zone "example.com" IN {
  type master;
  file "example.com.zone";
  allow-update { none; };
};
12.2.2.4.2. A Reverse Name Resolution Zone File
A reverse name resolution zone file is used to translate an IP address in a particular namespace into an fully qualified domain name (FQDN). It looks very similar to a standard zone file, except that the PTR resource records are used to link the IP addresses to a fully qualified domain name as shown in Ejemplo 12.15, “A reverse name resolution zone file”.
Ejemplo 12.15. A reverse name resolution zone file
$ORIGIN 1.0.10.in-addr.arpa.
$TTL 86400
@  IN  SOA  dns1.example.com.  hostmaster.example.com. (
       2001062501  ; serial
       21600       ; refresh after 6 hours
       3600        ; retry after 1 hour
       604800      ; expire after 1 week
       86400 )     ; minimum TTL of 1 day
;
@  IN  NS   dns1.example.com.
;
1  IN  PTR  dns1.example.com.
2  IN  PTR  dns2.example.com.
;
5  IN  PTR  server1.example.com.
6  IN  PTR  server2.example.com.
;
3  IN  PTR  ftp.example.com.
4  IN  PTR  ftp.example.com.

In this example, IP addresses 10.0.1.1 through 10.0.1.6 are pointed to the corresponding fully qualified domain name.
This zone file would be called into service with a zone statement in the /etc/named.conf file similar to the following:
zone "1.0.10.in-addr.arpa" IN {
  type master;
  file "example.com.rr.zone";
  allow-update { none; };
};
There is very little difference between this example and a standard zone statement, except for the zone name. Note that a reverse name resolution zone requires the first three blocks of the IP address reversed followed by .in-addr.arpa. This allows the single block of IP numbers used in the reverse name resolution zone file to be associated with the zone.

12.2.3. Using the rndc Utility

The rndc utility is a command line tool that allows you to administer the named service, both locally and from a remote machine. Its usage is as follows:
rndc [option...] command [command-option]

12.2.3.1. Configuring the Utility

To prevent unauthorized access to the service, named must be configured to listen on the selected port (that is, 953 by default), and an identical key must be used by both the service and the rndc utility.
Tabla 12.7. Relevant files
Path Descripción
/etc/named.conf The default configuration file for the named service.
/etc/rndc.conf The default configuration file for the rndc utility.
/etc/rndc.key The default key location.

The rndc configuration is located in /etc/rndc.conf. If the file does not exist, the utility will use the key located in /etc/rndc.key, which was generated automatically during the installation process using the rndc-confgen -a command.
The named service is configured using the controls statement in the /etc/named.conf configuration file as described in Sección 12.2.1.2, “Otros tipos de declaraciones”. Unless this statement is present, only the connections from the loopback address (that is, 127.0.0.1) will be allowed, and the key located in /etc/rndc.key will be used.
For more information on this topic, refer to manual pages and the BIND 9 Administrator Reference Manual listed in Sección 12.2.7, “Recursos adicionales”.

Set the correct permissions

To prevent unprivileged users from sending control commands to the service, make sure only root is allowed to read the /etc/rndc.key file:
~]# chmod o-rwx /etc/rndc.key

12.2.3.2. Checking the Service Status

To check the current status of the named service, use the following command:
~]# rndc status
version: 9.7.0-P2-RedHat-9.7.0-5.P2.el6
CPUs found: 1
worker threads: 1
number of zones: 16
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 0/0/1000
tcp clients: 0/100
server is up and running

12.2.3.3. Reloading the Configuration and Zones

To reload both the configuration file and zones, type the following at a shell prompt:
~]# rndc reload
server reload successful
This will reload the zones while keeping all previously cached responses, so that you can make changes to the zone files without losing all stored name resolutions.
To reload a single zone, specify its name after the reload command, for example:
~]# rndc reload localhost
zone reload up-to-date
Finally, to reload the configuration file and newly added zones only, type:
~]# rndc reconfig

Modifying zones with dynamic DNS

If you intend to manually modify a zone that uses Dynamic DNS (DDNS), make sure you run the freeze command first:
~]# rndc freeze localhost
Once you are finished, run the thaw command to allow the DDNS again and reload the zone:
~]# rndc thaw localhost
The zone reload and thaw was successful.

12.2.3.4. Updating Zone Keys

To update the DNSSEC keys and sign the zone, use the sign command. For example:
~]# rndc sign localhost
Note that to sign a zone with the above command, the auto-dnssec option has to be set to maintain in the zone statement. For instance:
zone "localhost" IN {
  type master;
  file "named.localhost";
  allow-update { none; };
  auto-dnssec maintain;
};

12.2.3.5. Enabling the DNSSEC Validation

To enable the DNSSEC validation, type the following at a shell prompt:
~]# rndc validation on
Similarly, to disable this option, type:
~]# rndc validation off
Refer to the options statement described in Sección 12.2.1.1, “Tipos de declaraciones comúnes” for information on how configure this option in /etc/named.conf.

12.2.3.6. Enabling the Query Logging

To enable (or disable in case it is currently enabled) the query logging, run the following command:
~]# rndc querylog
To check the current setting, use the status command as described in Sección 12.2.3.2, “Checking the Service Status”.

12.2.4. Using the dig Utility

The dig utility is a command line tool that allows you to perform DNS lookups and debug a nameserver configuration. Its typical usage is as follows:
dig [@server] [option...] name type
Refer to Sección 12.2.2.2, “Common Resource Records” for a list of common types.

12.2.4.1. Looking Up a Nameserver

To look up a nameserver for a particular domain, use the command in the following form:
dig name NS
In Ejemplo 12.16, “A sample nameserver lookup”, the dig utility is used to display nameservers for example.com.
Ejemplo 12.16. A sample nameserver lookup
~]$ dig example.com NS

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com NS
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57883
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com.                   IN      NS

;; ANSWER SECTION:
example.com.            99374   IN      NS      a.iana-servers.net.
example.com.            99374   IN      NS      b.iana-servers.net.

;; Query time: 1 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:04:06 2010
;; MSG SIZE  rcvd: 77

12.2.4.2. Looking Up an IP Address

To look up an IP address assigned to a particular domain, use the command in the following form:
dig name A
In Ejemplo 12.17, “A sample IP address lookup”, the dig utility is used to display the IP address of example.com.
Ejemplo 12.17. A sample IP address lookup
~]$ dig example.com A

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com A
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4849
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com.                   IN      A

;; ANSWER SECTION:
example.com.            155606  IN      A       192.0.32.10

;; AUTHORITY SECTION:
example.com.            99175   IN      NS      a.iana-servers.net.
example.com.            99175   IN      NS      b.iana-servers.net.

;; Query time: 1 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:07:25 2010
;; MSG SIZE  rcvd: 93

12.2.4.3. Looking Up a Hostname

To look up a hostname for a particular IP address, use the command in the following form:
dig -x address
In Ejemplo 12.18, “A sample hostname lookup”, the dig utility is used to display the hostname assigned to 192.0.32.10.
Ejemplo 12.18. A sample hostname lookup
~]$ dig -x 192.0.32.10

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> -x 192.0.32.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29683
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 6

;; QUESTION SECTION:
;10.32.0.192.in-addr.arpa.      IN      PTR

;; ANSWER SECTION:
10.32.0.192.in-addr.arpa. 21600 IN      PTR     www.example.com.

;; AUTHORITY SECTION:
32.0.192.in-addr.arpa.  21600   IN      NS      b.iana-servers.org.
32.0.192.in-addr.arpa.  21600   IN      NS      c.iana-servers.net.
32.0.192.in-addr.arpa.  21600   IN      NS      d.iana-servers.net.
32.0.192.in-addr.arpa.  21600   IN      NS      ns.icann.org.
32.0.192.in-addr.arpa.  21600   IN      NS      a.iana-servers.net.

;; ADDITIONAL SECTION:
a.iana-servers.net.     13688   IN      A       192.0.34.43
b.iana-servers.org.     5844    IN      A       193.0.0.236
b.iana-servers.org.     5844    IN      AAAA    2001:610:240:2::c100:ec
c.iana-servers.net.     12173   IN      A       139.91.1.10
c.iana-servers.net.     12173   IN      AAAA    2001:648:2c30::1:10
ns.icann.org.           12884   IN      A       192.0.34.126

;; Query time: 156 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:25:15 2010
;; MSG SIZE  rcvd: 310

12.2.5. Características avanzadas de BIND

Most BIND implementations only use the named service to provide name resolution services or to act as an authority for a particular domain. However, BIND version 9 has a number of advanced features that allow for a more secure and efficient DNS service.

Make sure the feature is supported

Before attempting to use advanced features like DNSSEC, TSIG, or IXFR, make sure that the particular feature is supported by all nameservers in the network environment, especially when you use older versions of BIND or non-BIND servers.
All of the features mentioned are discussed in greater detail in the BIND 9 Administrator Reference Manual referenced in Sección 12.2.7.1, “Documentación instalada”.

12.2.5.1. Vistas múltiples

Optionally, different information can be presented to a client depending on the network a request originates from. This is primarily used to deny sensitive DNS entries from clients outside of the local network, while allowing queries from clients inside the local network.
To configure multiple views, add the view statement to the /etc/named.conf configuration file. Use the match-clients option to match IP addresses or entire networks and give them special options and zone data.

12.2.5.2. Incremental Zone Transfers (IXFR)

Incremental Zone Transfers (IXFR) allow a secondary nameserver to only download the updated portions of a zone modified on a primary nameserver. Compared to the standard transfer process, this makes the notification and update process much more efficient.
Note that IXFR is only available when using dynamic updating to make changes to master zone records. If manually editing zone files to make changes, Automatic Zone Transfer (AXFR) is used.

12.2.5.3. Transaction SIGnatures (TSIG)

Transaction SIGnatures (TSIG) ensure that a shared secret key exists on both primary and secondary nameserver before allowing a transfer. This strengthens the standard IP address-based method of transfer authorization, since attackers would not only need to have access to the IP address to transfer the zone, but they would also need to know the secret key.
Since version 9, BIND also supports TKEY, which is another shared secret key method of authorizing zone transfers.

Secure the transfer

When communicating over an insecure network, do not rely on IP address-based authentication only.

12.2.5.4. DNS Security Extensions (DNSSEC)

Domain Name System Security Extensions (DNSSEC) provide origin authentication of DNS data, authenticated denial of existence, and data integrity. When a particular domain is marked as secure, the SERFVAIL response is returned for each resource record that fails the validation.
Note that to debug a DNSSEC-signed domain or a DNSSEC-aware resolver, you can use the dig utility as described in Sección 12.2.4, “Using the dig Utility”. Useful options are +dnssec (requests DNSSEC-related resource records by setting the DNSSEC OK bit), +cd (tells recursive nameserver not to validate the response), and +bufsize=512 (changes the packet size to 512B to get through some firewalls).

12.2.5.5. Internet Protocol version 6 (IPv6)

Internet Protocol version 6 (IPv6) is supported through the use of AAAA resource records, and the listen-on-v6 directive as described in Tabla 12.3, “Commonly used options”.

12.2.6. Errores comunes que debe evitar

The following is a list of advices how to avoid common mistakes users make when configuring a nameserver:
Use semicolons and curly brackets correctly
An omitted semicolon or unmatched curly bracket in the /etc/named.conf file can prevent the named service from starting.
Use period (that is, the . character) correctly
In zone files, a period at the end of a domain name denotes a fully qualified domain name. If omitted, the named service will append the name of the zone or the value of $ORIGIN to complete it.
Increment the serial number when editing a zone file
If the serial number is not incremented, the primary nameserver will have the correct, new information, but the secondary nameservers will never be notified of the change, and will not attempt to refresh their data of that zone.
Configure the firewall
If a firewall is blocking connections from the named service to other nameservers, the recommended best practice is to change the firewall settings whenever possible.

Avoid using fixed UDP source ports

According to the recent research in DNS security, using a fixed UDP source port for DNS queries is a potential security vulnerability that could allow an attacker to conduct cache-poisoning attacks more easily. To prevent this, configure your firewall to allow queries from a random UDP source port.

12.2.7. Recursos adicionales

Las siguientes fuentes de información le proporcionarán recursos adicionales relacionados a BIND.

12.2.7.1. Documentación instalada

BIND features a full range of installed documentation covering many different topics, each placed in its own subject directory. For each item below, replace version with the version of the bind package installed on the system:
/usr/share/doc/bind-version/
The main directory containing the most recent documentation.
/usr/share/doc/bind-version/arm/
The directory containing the BIND 9 Administrator Reference Manual in HTML and SGML formats, which details BIND resource requirements, how to configure different types of nameservers, how to perform load balancing, and other advanced topics. For most new users of BIND, this is the best place to start.
/usr/share/doc/bind-version/draft/
The directory containing assorted technical documents that review issues related to the DNS service, and propose some methods to address them.
/usr/share/doc/bind-version/misc/
The directory designed to address specific advanced issues. Users of BIND version 8 should consult the migration document for specific changes they must make when moving to BIND 9. The options file lists all of the options implemented in BIND 9 that are used in /etc/named.conf.
/usr/share/doc/bind-version/rfc/
The directory providing every RFC document related to BIND.
There is also a number of man pages for the various applications and configuration files involved with BIND:
man rndc
The manual page for rndc containing the full documentation on its usage.
man named
The manual page for named containing the documentation on assorted arguments that can be used to control the BIND nameserver daemon.
man lwresd
The manual page for lwresd containing the full documentation on the lightweight resolver daemon and its usage.
man named.conf
The manual page with a comprehensive list of options available within the named configuration file.
man rndc.conf
The manual page with a comprehensive list of options available within the rndc configuration file.

12.2.7.2. Sitios Web útiles

http://www.isc.org/software/bind
The home page of the BIND project containing information about current releases as well as a PDF version of the BIND 9 Administrator Reference Manual.

Capítulo 13. Servidores web

Un servidor HTTP (Hypertext Transfer Protocol, protocolo de transferencia hipertexto), o un servidor web, es un servicio de red que sirve contenido a un cliente a través de la web. Esto típicamente significa páginas web, pero cualquier tipo de documento pueden ser servidos también.

13.1. The Apache HTTP Server

This section focuses on the Apache HTTP Server 2.2, a robust, full-featured open source web server developed by the Apache Software Foundation, that is included in Fedora 17. It describes the basic configuration of the httpd service, and covers advanced topics such as adding server modules, setting up virtual hosts, or configuring the secure HTTP server.
There are important differences between the Apache HTTP Server 2.2 and version 2.0, and if you are upgrading from a previous release of Fedora, you will need to update the httpd service configuration accordingly. This section reviews some of the newly added features, outlines important changes, and guides you through the update of older configuration files.

13.1.1. New Features

The Apache HTTP Server version 2.2 introduces the following enhancements:
  • Improved caching modules, that is, mod_cache and mod_disk_cache.
  • Support for proxy load balancing, that is, the mod_proxy_balancer module.
  • Support for large files on 32-bit architectures, allowing the web server to handle files greater than 2GB.
  • A new structure for authentication and authorization support, replacing the authentication modules provided in previous versions.

13.1.2. Notable Changes

Since version 2.0, few changes have been made to the default httpd service configuration:
  • The following modules are no longer loaded by default: mod_cern_meta and mod_asis.
  • The following module is newly loaded by default: mod_ext_filter.

13.1.3. Updating the Configuration

To update the configuration files from the Apache HTTP Server version 2.0, take the following steps:
  1. Make sure all module names are correct, since they may have changed. Adjust the LoadModule directive for each module that has been renamed.
  2. Recompile all third party modules before attempting to load them. This typically means authentication and authorization modules.
  3. If you use the mod_userdir module, make sure the UserDir directive indicating a directory name (typically public_html) is provided.
  4. If you use the Apache HTTP Secure Server, edit the /etc/httpd/conf.d/ssl.conf to enable the Secure Sockets Layer (SSL) protocol.
Note that you can check the configuration for possible errors by using the following command:
service httpd configtest
For more information on upgrading the Apache HTTP Server configuration from version 2.0 to 2.2, refer to http://httpd.apache.org/docs/2.2/upgrading.html.

13.1.4. Running the httpd Service

This section describes how to start, stop, restart, and check the current status of the Apache HTTP Server. To be able to use the httpd service, make sure you have the httpd installed. You can do so by using the following command as root:
yum install httpd
For more information on the concept of runlevels and how to manage system services in Fedora in general, refer to Capítulo 8, Services and Daemons.

13.1.4.1. Starting the Service

To run the httpd service, type the following at a shell prompt as root:
systemctl start httpd.service
If you want the service to start automatically at the boot time, use the following command:
systemctl enable httpd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

Using the secure server

If running the Apache HTTP Server as a secure server, a password may be required after the machine boots if using an encrypted private SSL key.

13.1.4.2. Stopping the Service

To stop the running httpd service, type the following at a shell prompt as root:
systemctl stop httpd.service
To prevent the service from starting automatically at the boot time, type:
systemctl disable httpd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

13.1.4.3. Restarting the Service

There are two different ways to restart the running httpd service:
  1. To restart the service completely, type the following at a shell prompt as root:
    systemctl restart httpd.service
    This will stop the running httpd service, and then start it again. Use this command after installing or removing a dynamically loaded module such as PHP.
  2. To only reload the configuration, as root, type:
    systemctl reload httpd.service
    This will cause the running httpd service to reload the configuration file. Note that any requests being currently processed will be interrupted, which may cause a client browser to display an error message or render a partial page.
  3. To reload the configuration without affecting active requests, run the following command as root:
    service httpd graceful
    This will cause the running httpd service to reload the configuration file. Note that any requests being currently processed will use the old configuration.
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

13.1.4.4. Checking the Service Status

To check whether the service is running, type the following at a shell prompt:
systemctl is-active httpd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

13.1.5. Editing the Configuration Files

When the httpd service is started, by default, it reads the configuration from locations that are listed in Tabla 13.1, “The httpd service configuration files”.
Tabla 13.1. The httpd service configuration files
Path Descripción
/etc/httpd/conf/httpd.conf The main configuration file.
/etc/httpd/conf.d/ An auxiliary directory for configuration files that are included in the main configuration file.

Although the default configuration should be suitable for most situations, it is a good idea to become at least familiar with some of the more important configuration options. Note that for any changes to take effect, the web server has to be restarted first. Refer to Sección 13.1.4.3, “Restarting the Service” for more information on how to restart the httpd service.
To check the configuration for possible errors, type the following at a shell prompt:
service httpd configtest
To make the recovery from mistakes easier, it is recommended that you make a copy of the original file before editing it.

13.1.5.1. Common httpd.conf Directives

The following directives are commonly used in the /etc/httpd/conf/httpd.conf configuration file:
<Directory>
The <Directory> directive allows you to apply certain directives to a particular directory only. It takes the following form:
<Directory directory>
  directive
  …
</Directory>
The directory can be either a full path to an existing directory in the local file system, or a wildcard expression.
This directive can be used to configure additional cgi-bin directories for server-side scripts located outside the directory that is specified by ScriptAlias. In this case, the ExecCGI and AddHandler directives must be supplied, and the permissions on the target directory must be set correctly (that is, 0755).
Ejemplo 13.1. Using the <Directory> directive
<Directory /var/www/html>
  Options Indexes FollowSymLinks
  AllowOverride None
  Order allow,deny
  Allow from all
</Directory>

<IfDefine>
The IfDefine directive allows you to use certain directives only when a particular parameter is supplied on the command line. It takes the following form:
<IfDefine [!]parameter>
  directive
  …
</IfDefine>
The parameter can be supplied at a shell prompt using the -Dparameter command line option (for example, httpd -DEnableHome). If the optional exclamation mark (that is, !) is present, the enclosed directives are used only when the parameter is not specified.
Ejemplo 13.2. Using the <IfDefine> directive
<IfDefine EnableHome>
  UserDir public_html
</IfDefine>

<IfModule>
The <IfModule> directive allows you to use certain directive only when a particular module is loaded. It takes the following form:
<IfModule [!]module>
  directive
  …
</IfModule>
The module can be identified either by its name, or by the file name. If the optional exclamation mark (that is, !) is present, the enclosed directives are used only when the module is not loaded.
Ejemplo 13.3. Using the <IfModule> directive
<IfModule mod_disk_cache.c>
  CacheEnable disk /
  CacheRoot /var/cache/mod_proxy
</IfModule>

<Location>
The <Location> directive allows you to apply certain directives to a particular URL only. It takes the following form:
<Location url>
  directive
  …
</Location>
The url can be either a path relative to the directory specified by the DocumentRoot directive (for example, /server-info), or an external URL such as http://example.com/server-info.
Ejemplo 13.4. Using the <Location> directive
<Location /server-info>
  SetHandler server-info
  Order deny,allow
  Deny from all
  Allow from .example.com
</Location>

<Proxy>
The <Proxy> directive allows you to apply certain directives to the proxy server only. It takes the following form:
<Proxy pattern>
  directive
  …
</Proxy>
The pattern can be an external URL, or a wildcard expression (for example, http://example.com/*).
Ejemplo 13.5. Using the <Proxy> directive
<Proxy *>
  Order deny,allow
  Deny from all
  Allow from .example.com
</Proxy>

<VirtualHost>
The <VirtualHost> directive allows you apply certain directives to particular virtual hosts only. It takes the following form:
<VirtualHost address[:port]…>
  directive
  …
</VirtualHost>
The address can be an IP address, a fully qualified domain name, or a special form as described in Tabla 13.2, “Available <VirtualHost> options”.
Tabla 13.2. Available <VirtualHost> options
Opciones Descripción
* Represents all IP addresses.
_default_ Represents unmatched IP addresses.

Ejemplo 13.6. Using the <VirtualHost> directive
<VirtualHost *:80>
  ServerAdmin webmaster@penguin.example.com
  DocumentRoot /www/docs/penguin.example.com
  ServerName penguin.example.com
  ErrorLog logs/penguin.example.com-error_log
  CustomLog logs/penguin.example.com-access_log common
</VirtualHost>

AccessFileName
The AccessFileName directive allows you to specify the file to be used to customize access control information for each directory. It takes the following form:
AccessFileName filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for .htaccess.
For security reasons, the directive is typically followed by the Files tag to prevent the files beginning with .ht from being accessed by web clients. This includes the .htaccess and .htpasswd files.
Ejemplo 13.7. Using the AccessFileName directive
AccessFileName .htaccess

<Files ~ "^\.ht">
  Order allow,deny
  Deny from all
  Satisfy All
</Files>

Action
The Action directive allows you to specify a CGI script to be executed when a certain media type is requested. It takes the following form:
Action content-type path
The content-type has to be a valid MIME type such as text/html, image/png, or application/pdf. The path refers to an existing CGI script, and must be relative to the directory specified by the DocumentRoot directive (for example, /cgi-bin/process-image.cgi).
Ejemplo 13.8. Using the Action directive
Action image/png /cgi-bin/process-image.cgi

AddDescription
The AddDescription directive allows you to specify a short description to be displayed in server-generated directory listings for a given file. It takes the following form:
AddDescription "description" filename
The description should be a short text enclosed in double quotes (that is, "). The filename can be a full file name, a file extension, or a wildcard expression.
Ejemplo 13.9. Using the AddDescription directive
AddDescription "GZIP compressed tar archive" .tgz

AddEncoding
The AddEncoding directive allows you to specify an encoding type for a particular file extension. It takes the following form:
AddEncoding encoding extension
The encoding has to be a valid MIME encoding such as x-compress, x-gzip, etc. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .gz).
This directive is typically used to instruct web browsers to decompress certain file types as they are downloaded.
Ejemplo 13.10. Using the AddEncoding directive
AddEncoding x-gzip .gz .tgz

AddHandler
The AddHandler directive allows you to map certain file extensions to a selected handler. It takes the following form:
AddHandler handler extension
The handler has to be a name of previously defined handler. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cgi).
This directive is typically used to treat files with the .cgi extension as CGI scripts regardless of the directory they are in. Additionally, it is also commonly used to process server-parsed HTML and image-map files.
Ejemplo 13.11. Using the AddHandler option
AddHandler cgi-script .cgi

AddIcon
The AddIcon directive allows you to specify an icon to be displayed for a particular file in server-generated directory listings. It takes the following form:
AddIcon path pattern
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/folder.png). The pattern can be a file name, a file extension, a wildcard expression, or a special form as described in the following table:
Tabla 13.3. Available AddIcon options
Opciones Descripción
^^DIRECTORY^^ Represents a directory.
^^BLANKICON^^ Represents a blank line.

Ejemplo 13.12. Using the AddIcon directive
AddIcon /icons/text.png .txt README

AddIconByEncoding
The AddIconByEncoding directive allows you to specify an icon to be displayed for a particular encoding type in server-generated directory listings. It takes the following form:
AddIconByEncoding path encoding
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/compressed.png). The encoding has to be a valid MIME encoding such as x-compress, x-gzip, etc.
Ejemplo 13.13. Using the AddIconByEncoding directive
AddIconByEncoding /icons/compressed.png x-compress x-gzip

AddIconByType
The AddIconByType directive allows you to specify an icon to be displayed for a particular media type in server-generated directory listings. It takes the following form:
AddIconByType path content-type
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/text.png). The content-type has to be either a valid MIME type (for example, text/html or image/png), or a wildcard expression such as text/*, image/*, etc.
Ejemplo 13.14. Using the AddIconByType directive
AddIconByType /icons/video.png video/*

AddLanguage
The AddLanguage directive allows you to associate a file extension with a specific language. It takes the following form:
AddLanguage language extension
The language has to be a valid MIME language such as cs, en, or fr. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cs).
This directive is especially useful for web servers that serve content in multiple languages based on the client's language settings.
Ejemplo 13.15. Using the AddLanguage directive
AddLanguage cs .cs .cz

AddType
The AddType directive allows you to define or override the media type for a particular file extension. It takes the following form:
AddType content-type extension
The content-type has to be a valid MIME type such as text/html, image/png, etc. The extension is a case sensitive file extension, and is conventionally written with a leading dot (for example, .cs).
Ejemplo 13.16. Using the AddType directive
AddType application/x-gzip .gz .tgz

Alias
The Alias directive allows you to refer to files and directories outside the default directory specified by the DocumentRoot directive. It takes the following form:
Alias url-path real-path
The url-path must be relative to the directory specified by the DocumentRoot directive (for example, /images/). The real-path is a full path to a file or directory in the local file system.
This directive is typically followed by the Directory tag with additional permissions to access the target directory. By default, the /icons/ alias is created so that the icons from /var/www/icons/ are displayed in server-generated directory listings.
Ejemplo 13.17. Using the Alias directive
Alias /icons/ /var/www/icons/

<Directory "/var/www/icons">
  Options Indexes MultiViews FollowSymLinks
  AllowOverride None
  Order allow,deny
  Allow from all
<Directory>

Allow
The Allow directive allows you to specify which clients have permission to access a given directory. It takes the following form:
Allow from client
The client can be a domain name, an IP address (both full and partial), a network/netmask pair, or all for all clients.
Ejemplo 13.18. Using the Allow directive
Allow from 192.168.1.0/255.255.255.0

AllowOverride
The AllowOverride directive allows you to specify which directives in a .htaccess file can override the default configuration. It takes the following form:
AllowOverride type
The type has to be one of the available grouping options as described in Tabla 13.4, “Available AllowOverride options”.
Tabla 13.4. Available AllowOverride options
Opciones Descripción
All All directives in .htaccess are allowed to override earlier configuration settings.
None No directive in .htaccess is allowed to override earlier configuration settings.
AuthConfig Allows the use of authorization directives such as AuthName, AuthType, or Require.
FileInfo Allows the use of file type, metadata, and mod_rewrite directives such as DefaultType, RequestHeader, or RewriteEngine, as well as the Action directive.
Indexes Allows the use of directory indexing directives such as AddDescription, AddIcon, or FancyIndexing.
Limit Allows the use of host access directives, that is, Allow, Deny, and Order.
Options[=option,…] Allows the use of the Options directive. Additionally, you can provide a comma-separated list of options to customize which options can be set using this directive.

Ejemplo 13.19. Using the AllowOverride directive
AllowOverride FileInfo AuthConfig Limit

BrowserMatch
The BrowserMatch directive allows you to modify the server behavior based on the client's web browser type. It takes the following form:
BrowserMatch pattern variable
The pattern is a regular expression to match the User-Agent HTTP header field. The variable is an environment variable that is set when the header field matches the pattern.
By default, this directive is used to deny connections to specific browsers with known issues, and to disable keepalives and HTTP header flushes for browsers that are known to have problems with these actions.
Ejemplo 13.20. Using the BrowserMatch directive
BrowserMatch "Mozilla/2" nokeepalive

CacheDefaultExpire
The CacheDefaultExpire option allows you to set how long to cache a document that does not have any expiration date or the date of its last modification specified. It takes the following form:
CacheDefaultExpire time
The time is specified in seconds. The default option is 3600 (that is, one hour).
Ejemplo 13.21. Using the CacheDefaultExpire directive
CacheDefaultExpire 3600

CacheDisable
The CacheDisable directive allows you to disable caching of certain URLs. It takes the following form:
CacheDisable path
The path must be relative to the directory specified by the DocumentRoot directive (for example, /files/).
Ejemplo 13.22. Using the CacheDisable directive
CacheDisable /temporary

CacheEnable
The CacheEnable directive allows you to specify a cache type to be used for certain URLs. It takes the following form:
CacheEnable type url
The type has to be a valid cache type as described in Tabla 13.5, “Available cache types”. The url can be a path relative to the directory specified by the DocumentRoot directive (for example, /images/), a protocol (for example, ftp://), or an external URL such as http://example.com/.
Tabla 13.5. Available cache types
Type Descripción
mem The memory-based storage manager.
disk The disk-based storage manager.
fd The file descriptor cache.

Ejemplo 13.23. Using the CacheEnable directive
CacheEnable disk /

CacheLastModifiedFactor
The CacheLastModifiedFactor directive allows you to customize how long to cache a document that does not have any expiration date specified, but that provides information about the date of its last modification. It takes the following form:
CacheLastModifiedFactor number
The number is a coefficient to be used to multiply the time that passed since the last modification of the document. The default option is 0.1 (that is, one tenth).
Ejemplo 13.24. Using the CacheLastModifiedFactor directive
CacheLastModifiedFactor 0.1

CacheMaxExpire
The CacheMaxExpire directive allows you to specify the maximum amount of time to cache a document. It takes the following form:
CacheMaxExpire time
The time is specified in seconds. The default option is 86400 (that is, one day).
Ejemplo 13.25. Using the CacheMaxExpire directive
CacheMaxExpire 86400

CacheNegotiatedDocs
The CacheNegotiatedDocs directive allows you to enable caching of the documents that were negotiated on the basis of content. It takes the following form:
CacheNegotiatedDocs option
The option has to be a valid keyword as described in Tabla 13.6, “Available CacheNegotiatedDocs options”. Since the content-negotiated documents may change over time or because of the input from the requester, the default option is Off.
Tabla 13.6. Available CacheNegotiatedDocs options
Opciones Descripción
On Enables caching the content-negotiated documents.
Off Disables caching the content-negotiated documents.

Ejemplo 13.26. Using the CacheNegotiatedDocs directive
CacheNegotiatedDocs On

CacheRoot
The CacheRoot directive allows you to specify the directory to store cache files in. It takes the following form:
CacheRoot directory
The directory must be a full path to an existing directory in the local file system. The default option is /var/cache/mod_proxy/.
Ejemplo 13.27. Using the CacheRoot directive
CacheRoot /var/cache/mod_proxy

CustomLog
The CustomLog directive allows you to specify the log file name and the log file format. It takes the following form:
CustomLog path format
The path refers to a log file, and must be relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The format has to be either an explicit format string, or a format name that was previously defined using the LogFormat directive.
Ejemplo 13.28. Using the CustomLog directive
CustomLog logs/access_log combined

DefaultIcon
The DefaultIcon directive allows you to specify an icon to be displayed for a file in server-generated directory listings when no other icon is associated with it. It takes the following form:
DefaultIcon path
The path refers to an existing icon file, and must be relative to the directory specified by the DocumentRoot directive (for example, /icons/unknown.png).
Ejemplo 13.29. Using the DefaultIcon directive
DefaultIcon /icons/unknown.png

DefaultType
The DefaultType directive allows you to specify a media type to be used in case the proper MIME type cannot be determined by the server. It takes the following form:
DefaultType content-type
The content-type has to be a valid MIME type such as text/html, image/png, application/pdf, etc.
Ejemplo 13.30. Using the DefaultType directive
DefaultType text/plain

Deny
The Deny directive allows you to specify which clients are denied access to a given directory. It takes the following form:
Deny from client
The client can be a domain name, an IP address (both full and partial), a network/netmask pair, or all for all clients.
Ejemplo 13.31. Using the Deny directive
Deny from 192.168.1.1

DirectoryIndex
The DirectoryIndex directive allows you to specify a document to be served to a client when a directory is requested (that is, when the URL ends with the / character). It takes the following form:
DirectoryIndex filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for index.html, and index.html.var.
Ejemplo 13.32. Using the DirectoryIndex directive
DirectoryIndex index.html index.html.var

DocumentRoot
The DocumentRoot directive allows you to specify the main directory from which the content is served. It takes the following form:
DocumentRoot directory
The directory must be a full path to an existing directory in the local file system. The default option is /var/www/html/.
Ejemplo 13.33. Using the DocumentRoot directive
DocumentRoot /var/www/html

ErrorDocument
The ErrorDocument directive allows you to specify a document or a message to be displayed as a response to a particular error. It takes the following form:
ErrorDocument error-code action
The error-code has to be a valid code such as 403 (Forbidden), 404 (Not Found), or 500 (Internal Server Error). The action can be either a URL (both local and external), or a message string enclosed in double quotes (that is, ").
Ejemplo 13.34. Using the ErrorDocument directive
ErrorDocument 403 "Access Denied"
ErrorDocument 404 /404-not_found.html

ErrorLog
The ErrorLog directive allows you to specify a file to which the server errors are logged. It takes the following form:
ErrorLog path
The path refers to a log file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is logs/error_log
Ejemplo 13.35. Using the ErrorLog directive
ErrorLog logs/error_log

ExtendedStatus
The ExtendedStatus directive allows you to enable detailed server status information. It takes the following form:
ExtendedStatus option
The option has to be a valid keyword as described in Tabla 13.7, “Available ExtendedStatus options”. The default option is Off.
Tabla 13.7. Available ExtendedStatus options
Opciones Descripción
On Enables generating the detailed server status.
Off Disables generating the detailed server status.

Ejemplo 13.36. Using the ExtendedStatus directive
ExtendedStatus On

Group
The Group directive allows you to specify the group under which the httpd service will run. It takes the following form:
Group group
The group has to be an existing UNIX group. The default option is apache.
Note that Group is no longer supported inside <VirtualHost>, and has been replaced by the SuexecUserGroup directive.
Ejemplo 13.37. Using the Group directive
Group apache

HeaderName
The HeaderName directive allows you to specify a file to be prepended to the beginning of the server-generated directory listing. It takes the following form:
HeaderName filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for HEADER.html.
Ejemplo 13.38. Using the HeaderName directive
HeaderName HEADER.html

HostnameLookups
The HostnameLookups directive allows you to enable automatic resolving of IP addresses. It takes the following form:
HostnameLookups option
The option has to be a valid keyword as described in Tabla 13.8, “Available HostnameLookups options”. To conserve resources on the server, the default option is Off.
Tabla 13.8. Available HostnameLookups options
Opciones Descripción
On Enables resolving the IP address for each connection so that the hostname can be logged. However, this also adds a significant processing overhead.
Double Enables performing the double-reverse DNS lookup. In comparison to the above option, this adds even more processing overhead.
Off Disables resolving the IP address for each connection.

Note that when the presence of hostnames is required in server log files, it is often possible to use one of the many log analyzer tools that perform the DNS lookups more efficiently.
Ejemplo 13.39. Using the HostnameLookups directive
HostnameLookups Off

Include
The Include directive allows you to include other configuration files. It takes the following form:
Include filename
The filename can be an absolute path, a path relative to the directory specified by the ServerRoot directive, or a wildcard expression. All configuration files from the /etc/httpd/conf.d/ directory are loaded by default.
Ejemplo 13.40. Using the Include directive
Include conf.d/*.conf

IndexIgnore
The IndexIgnore directive allows you to specify a list of file names to be omitted from the server-generated directory listings. It takes the following form:
IndexIgnore filename
The filename option can be either a full file name, or a wildcard expression.
Ejemplo 13.41. Using the IndexIgnore directive
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

IndexOptions
The IndexOptions directive allows you to customize the behavior of server-generated directory listings. It takes the following form:
IndexOptions option
The option has to be a valid keyword as described in Tabla 13.9, “Available directory listing options”. The default options are Charset=UTF-8, FancyIndexing, HTMLTable, NameWidth=*, and VersionSort.
Tabla 13.9. Available directory listing options
Opciones Descripción
Charset=encoding Specifies the character set of a generated web page. The encoding has to be a valid character set such as UTF-8 or ISO-8859-2.
Type=content-type Specifies the media type of a generated web page. The content-type has to be a valid MIME type such as text/html or text/plain.
DescriptionWidth=value Specifies the width of the description column. The value can be either a number of characters, or an asterisk (that is, *) to adjust the width automatically.
FancyIndexing Enables advanced features such as different icons for certain files or possibility to re-sort a directory listing by clicking on a column header.
FolderFirst Enables listing directories first, always placing them above files.
HTMLTable Enables the use of HTML tables for directory listings.
IconsAreLinks Enables using the icons as links.
IconHeight=value Specifies an icon height. The value is a number of pixels.
IconWidth=value Specifies an icon width. The value is a number of pixels.
IgnoreCase Enables sorting files and directories in a case-sensitive manner.
IgnoreClient Disables accepting query variables from a client.
NameWidth=value Specifies the width of the file name column. The value can be either a number of characters, or an asterisk (that is, *) to adjust the width automatically.
ScanHTMLTitles Enables parsing the file for a description (that is, the title element) in case it is not provided by the AddDescription directive.
ShowForbidden Enables listing the files with otherwise restricted access.
SuppressColumnSorting Disables re-sorting a directory listing by clicking on a column header.
SuppressDescription Disables reserving a space for file descriptions.
SuppressHTMLPreamble Disables the use of standard HTML preamble when a file specified by the HeaderName directive is present.
SuppressIcon Disables the use of icons in directory listings.
SuppressLastModified Disables displaying the date of the last modification field in directory listings.
SuppressRules Disables the use of horizontal lines in directory listings.
SuppressSize Disables displaying the file size field in directory listings.
TrackModified Enables returning the Last-Modified and ETag values in the HTTP header.
VersionSort Enables sorting files that contain a version number in the expected manner.
XHTML Enables the use of XHTML 1.0 instead of the default HTML 3.2.

Ejemplo 13.42. Using the IndexOptions directive
IndexOptions FancyIndexing VersionSort NameWidth=* HTMLTable Charset=UTF-8

KeepAlive
The KeepAlive directive allows you to enable persistent connections. It takes the following form:
KeepAlive option
The option has to be a valid keyword as described in Tabla 13.10, “Available KeepAlive options”. The default option is Off.
Tabla 13.10. Available KeepAlive options
Opciones Descripción
On Enables the persistent connections. In this case, the server will accept more than one request per connection.
Off Disables the keep-alive connections.

Note that when the persistent connections are enabled, on a busy server, the number of child processes can increase rapidly and eventually reach the maximum limit, slowing down the server significantly. To reduce the risk, it is recommended that you set KeepAliveTimeout to a low number, and monitor the /var/log/httpd/logs/error_log log file carefully.
Ejemplo 13.43. Using the KeepAlive directive
KeepAlive Off

KeepAliveTimeout
The KeepAliveTimeout directive allows you to specify the amount of time to wait for another request before closing the connection. It takes the following form:
KeepAliveTimeout time
The time is specified in seconds. The default option is 15.
Ejemplo 13.44. Using the KeepAliveTimeout directive
KeepAliveTimeout 15

LanguagePriority
The LanguagePriority directive allows you to customize the precedence of languages. It takes the following form:
LanguagePriority language
The language has to be a valid MIME language such as cs, en, or fr.
This directive is especially useful for web servers that serve content in multiple languages based on the client's language settings.
Ejemplo 13.45. Using the LanguagePriority directive
LanguagePriority sk cs en

Listen
The Listen directive allows you to specify IP addresses or ports to listen to. It takes the following form:
Listen [ip-address:]port [protocol]
The ip-address is optional and unless supplied, the server will accept incoming requests on a given port from all IP addresses. Since the protocol is determined automatically from the port number, it can be usually omitted. The default option is to listen to port 80.
Note that if the server is configured to listen to a port under 1024, only superuser will be able to start the httpd service.
Ejemplo 13.46. Using the Listen directive
Listen 80

LoadModule
The LoadModule directive allows you to load a Dynamic Shared Object (DSO) module. It takes the following form:
LoadModule name path
The name has to be a valid identifier of the required module. The path refers to an existing module file, and must be relative to the directory in which the libraries are placed (that is, /usr/lib/httpd/ on 32-bit and /usr/lib64/httpd/ on 64-bit systems by default).
Refer to Sección 13.1.6, “Working with Modules” for more information on the Apache HTTP Server's DSO support.
Ejemplo 13.47. Using the LoadModule directive
LoadModule php5_module modules/libphp5.so

LogFormat
The LogFormat directive allows you to specify a log file format. It takes the following form:
LogFormat format name
The format is a string consisting of options as described in Tabla 13.11, “Common LogFormat options”. The name can be used instead of the format string in the CustomLog directive.
Tabla 13.11. Common LogFormat options
Opciones Descripción
%b Represents the size of the response in bytes.
%h Represents the IP address or hostname of a remote client.
%l Represents the remote log name if supplied. If not, a hyphen (that is, -) is used instead.
%r Represents the first line of the request string as it came from the browser or client.
%s Represents the status code.
%t Represents the date and time of the request.
%u If the authentication is required, it represents the remote user. If not, a hyphen (that is, -) is used instead.
%{field} Represents the content of the HTTP header field. The common options include %{Referer} (the URL of the web page that referred the client to the server) and %{User-Agent} (the type of the web browser making the request).

Ejemplo 13.48. Using the LogFormat directive
LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogLevel
The LogLevel directive allows you to customize the verbosity level of the error log. It takes the following form:
LogLevel option
The option has to be a valid keyword as described in Tabla 13.12, “Available LogLevel options”. The default option is warn.
Tabla 13.12. Available LogLevel options
Opciones Descripción
emerg Only the emergency situations when the server cannot perform its work are logged.
alert All situations when an immediate action is required are logged.
crit All critical conditions are logged.
error All error messages are logged.
warn All warning messages are logged.
notice Even normal, but still significant situations are logged.
info Various informational messages are logged.
debug Various debugging messages are logged.

Ejemplo 13.49. Using the LogLevel directive
LogLevel warn

MaxKeepAliveRequests
The MaxKeepAliveRequests directive allows you to specify the maximum number of requests for a persistent connection. It takes the following form:
MaxKeepAliveRequests number
A high number can improve the performance of the server. Note that using 0 allows unlimited number of requests. The default option is 100.
Ejemplo 13.50. Using the MaxKeepAliveRequests option
MaxKeepAliveRequests 100

NameVirtualHost
The NameVirtualHost directive allows you to specify the IP address and port number for a name-based virtual host. It takes the following form:
NameVirtualHost ip-address[:port]
The ip-address can be either a full IP address, or an asterisk (that is, *) representing all interfaces. Note that IPv6 addresses have to be enclosed in square brackets (that is, [ and ]). The port is optional.
Name-based virtual hosting allows one Apache HTTP Server to serve different domains without using multiple IP addresses.

Using secure HTTP connections

Name-based virtual hosts only work with non-secure HTTP connections. If using virtual hosts with a secure server, use IP address-based virtual hosts instead.
Ejemplo 13.51. Using the NameVirtualHost directive
NameVirtualHost *:80

Options
The Options directive allows you to specify which server features are available in a particular directory. It takes the following form:
Options option
The option has to be a valid keyword as described in Tabla 13.13, “Available server features”.
Tabla 13.13. Available server features
Opciones Descripción
ExecCGI Enables the execution of CGI scripts.
FollowSymLinks Enables following symbolic links in the directory.
Includes Enables server-side includes.
IncludesNOEXEC Enables server-side includes, but does not allow the execution of commands.
Indexes Enables server-generated directory listings.
MultiViews Enables content-negotiated MultiViews.
SymLinksIfOwnerMatch Enables following symbolic links in the directory when both the link and the target file have the same owner.
All Enables all of the features above with the exception of MultiViews.
None Disables all of the features above.

Ejemplo 13.52. Using the Options directive
Options Indexes FollowSymLinks

Order
The Order directive allows you to specify the order in which the Allow and Deny directives are evaluated. It takes the following form:
Order option
The option has to be a valid keyword as described in Tabla 13.14, “Available Order options”. The default option is allow,deny.
Tabla 13.14. Available Order options
Opciones Descripción
allow,deny Allow directives are evaluated first.
deny,allow Deny directives are evaluated first.

Ejemplo 13.53. Using the Order directive
Order allow,deny

PidFile
The PidFile directive allows you to specify a file to which the process ID (PID) of the server is stored. It takes the following form:
PidFile path
The path refers to a pid file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is run/httpd.pid.
Ejemplo 13.54. Using the PidFile directive
PidFile run/httpd.pid

ProxyRequests
The ProxyRequests directive allows you to enable forward proxy requests. It takes the following form:
ProxyRequests option
The option has to be a valid keyword as described in Tabla 13.15, “Available ProxyRequests options”. The default option is Off.
Tabla 13.15. Available ProxyRequests options
Opciones Descripción
On Enables forward proxy requests.
Off Disables forward proxy requests.

Ejemplo 13.55. Using the ProxyRequests directive
ProxyRequests On

ReadmeName
The ReadmeName directive allows you to specify a file to be appended to the end of the server-generated directory listing. It takes the following form:
ReadmeName filename
The filename is a name of the file to look for in the requested directory. By default, the server looks for README.html.
Ejemplo 13.56. Using the ReadmeName directive
ReadmeName README.html

Redirect
The Redirect directive allows you to redirect a client to another URL. It takes the following form:
Redirect [status] path url
The status is optional, and if provided, it has to be a valid keyword as described in Tabla 13.16, “Available status options”. The path refers to the old location, and must be relative to the directory specified by the DocumentRoot directive (for example, /docs). The url refers to the current location of the content (for example, http://docs.example.com).
Tabla 13.16. Available status options
Status Descripción
permanent Indicates that the requested resource has been moved permanently. The 301 (Moved Permanently) status code is returned to a client.
temp Indicates that the requested resource has been moved only temporarily. The 302 (Found) status code is returned to a client.
seeother Indicates that the requested resource has been replaced. The 303 (See Other) status code is returned to a client.
gone Indicates that the requested resource has been removed permanently. The 410 (Gone) status is returned to a client.

Note that for more advanced redirection techniques, you can use the mod_rewrite module that is part of the Apache HTTP Server installation.
Ejemplo 13.57. Using the Redirect directive
Redirect permanent /docs http://docs.example.com

ScriptAlias
The ScriptAlias directive allows you to specify the location of CGI scripts. It takes the following form:
ScriptAlias url-path real-path
The url-path must be relative to the directory specified by the DocumentRoot directive (for example, /cgi-bin/). The real-path is a full path to a file or directory in the local file system.
This directive is typically followed by the Directory tag with additional permissions to access the target directory. By default, the /cgi-bin/ alias is created so that the scripts located in the /var/www/cgi-bin/ are accessible.
The ScriptAlias directive is used for security reasons to prevent CGI scripts from being viewed as ordinary text documents.
Ejemplo 13.58. Using the ScriptAlias directive
ScriptAlias /cgi-bin/ /var/www/cgi-bin/

<Directory "/var/www/cgi-bin">
  AllowOverride None
  Options None
  Order allow,deny
  Allow from all
</Directory>

ServerAdmin
The ServerAdmin directive allows you to specify the email address of the server administrator to be displayed in server-generated web pages. It takes the following form:
ServerAdmin email
The default option is root@localhost.
This directive is commonly set to webmaster@hostname, where hostname is the address of the server. Once set, alias webmaster to the person responsible for the web server in /etc/aliases, and as superuser, run the newaliases command.
Ejemplo 13.59. Using the ServerAdmin directive
ServerAdmin webmaster@penguin.example.com

ServerName
The ServerName directive allows you to specify the hostname and the port number of a web server. It takes the following form:
ServerName hostname[:port]
The hostname has to be a fully qualified domain name (FQDN) of the server. The port is optional, but when supplied, it has to match the number specified by the Listen directive.
When using this directive, make sure that the IP address and server name pair are included in the /etc/hosts file.
Ejemplo 13.60. Using the ServerName directive
ServerName penguin.example.com:80

ServerRoot
The ServerRoot directive allows you to specify the directory in which the server operates. It takes the following form:
ServerRoot directory
The directory must be a full path to an existing directory in the local file system. The default option is /etc/httpd/.
Ejemplo 13.61. Using the ServerRoot directive
ServerRoot /etc/httpd

ServerSignature
The ServerSignature directive allows you to enable displaying information about the server on server-generated documents. It takes the following form:
ServerSignature option
The option has to be a valid keyword as described in Tabla 13.17, “Available ServerSignature options”. The default option is On.
Tabla 13.17. Available ServerSignature options
Opciones Descripción
On Enables appending the server name and version to server-generated pages.
Off Disables appending the server name and version to server-generated pages.
EMail Enables appending the server name, version, and the email address of the system administrator as specified by the ServerAdmin directive to server-generated pages.

Ejemplo 13.62. Using the ServerSignature directive
ServerSignature On

ServerTokens
The ServerTokens directive allows you to customize what information are included in the Server response header. It takes the following form:
ServerTokens option
The option has to be a valid keyword as described in Tabla 13.18, “Available ServerTokens options”. The default option is OS.
Tabla 13.18. Available ServerTokens options
Opciones Descripción
Prod Includes the product name only (that is, Apache).
Major Includes the product name and the major version of the server (for example, 2).
Minor Includes the product name and the minor version of the server (for example, 2.2).
Min Includes the product name and the minimal version of the server (for example, 2.2.15).
OS Includes the product name, the minimal version of the server, and the type of the operating system it is running on (for example, Red Hat).
Full Includes all the information above along with the list of loaded modules.

Note that for security reasons, it is recommended to reveal as little information about the server as possible.
Ejemplo 13.63. Using the ServerTokens directive
ServerTokens Prod

SuexecUserGroup
The SuexecUserGroup directive allows you to specify the user and group under which the CGI scripts will be run. It takes the following form:
SuexecUserGroup user group
The user has to be an existing user, and the group must be a valid UNIX group.
For security reasons, the CGI scripts should not be run with root privileges. Note that in <VirtualHost>, SuexecUserGroup replaces the User and Group directives.
Ejemplo 13.64. Using the SuexecUserGroup directive
SuexecUserGroup apache apache

Timeout
The Timeout directive allows you to specify the amount of time to wait for an event before closing a connection. It takes the following form:
Timeout time
The time is specified in seconds. The default option is 60.
Ejemplo 13.65. Using the Timeout directive
Timeout 60

TypesConfig
The TypesConfig allows you to specify the location of the MIME types configuration file. It takes the following form:
TypesConfig path
The path refers to an existing MIME types configuration file, and can be either absolute, or relative to the directory that is specified by the ServerRoot directive (that is, /etc/httpd/ by default). The default option is /etc/mime.types.
Note that instead of editing /etc/mime.types, the recommended way to add MIME type mapping to the Apache HTTP Server is to use the AddType directive.
Ejemplo 13.66. Using the TypesConfig directive
TypesConfig /etc/mime.types

UseCanonicalName
The UseCanonicalName allows you to specify the way the server refers to itself. It takes the following form:
UseCanonicalName option
The option has to be a valid keyword as described in Tabla 13.19, “Available UseCanonicalName options”. The default option is Off.
Tabla 13.19. Available UseCanonicalName options
Opciones Descripción
On Enables the use of the name that is specified by the ServerName directive.
Off Disables the use of the name that is specified by the ServerName directive. The hostname and port number provided by the requesting client are used instead.
DNS Disables the use of the name that is specified by the ServerName directive. The hostname determined by a reverse DNS lookup is used instead.

Ejemplo 13.67. Using the UseCanonicalName directive
UseCanonicalName Off

User
The User directive allows you to specify the user under which the httpd service will run. It takes the following form:
User user
The user has to be an existing UNIX user. The default option is apache.
For security reasons, the httpd service should not be run with root privileges. Note that User is no longer supported inside <VirtualHost>, and has been replaced by the SuexecUserGroup directive.
Ejemplo 13.68. Using the User directive
User apache

UserDir
The UserDir directive allows you to enable serving content from users' home directories. It takes the following form:
UserDir option
The option can be either a name of the directory to look for in user's home directory (typically public_html), or a valid keyword as described in Tabla 13.20, “Available UserDir options”. The default option is disabled.
Tabla 13.20. Available UserDir options
Opciones Descripción
enabled user Enables serving content from home directories of given users.
disabled [user] Disables serving content from home directories, either for all users, or, if a space separated list of users is supplied, for given users only.

Set the correct permissions

In order for the web server to access the content, the permissions on relevant directories and files must be set correctly. Make sure that all users are able to access the home directories, and that they can access and read the content of the directory specified by the UserDir directive. For example, to allow access to public_html/ in the home directory of user joe, type the following at a shell prompt as root:
~]# chmod a+x /home/joe/
~]# chmod a+rx /home/joe/public_html/
All files in this directory must be set accordingly.
Ejemplo 13.69. Using the UserDir directive
UserDir public_html

13.1.5.2. Common ssl.conf Directives

The Secure Sockets Layer (SSL) directives allow you to customize the behavior of the Apache HTTP Secure Server, and in most cases, they are configured appropriately during the installation. Be careful when changing these settings, as incorrect configuration can lead to security vulnerabilities.
The following directive is commonly used in /etc/httpd/conf.d/ssl.conf:
SetEnvIf
The SetEnvIf directive allows you to set environment variables based on the headers of incoming connections. It takes the following form:
SetEnvIf option pattern [!]variable[=value]…
The option can be either a HTTP header field, a previously defined environment variable name, or a valid keyword as described in Tabla 13.21, “Available SetEnvIf options”. The pattern is a regular expression. The variable is an environment variable that is set when the option matches the pattern. If the optional exclamation mark (that is, !) is present, the variable is removed instead of being set.
Tabla 13.21. Available SetEnvIf options
Opciones Descripción
Remote_Host Refers to the client's hostname.
Remote_Addr Refers to the client's IP address.
Server_Addr Refers to the server's IP address.
Request_Method Refers to the request method (for example, GET).
Request_Protocol Refers to the protocol name and version (for example, HTTP/1.1).
Request_URI Refers to the requested resource.

The SetEnvIf directive is used to disable HTTP keepalives, and to allow SSL to close the connection without a closing notification from the client browser. This is necessary for certain web browsers that do not reliably shut down the SSL connection.
Ejemplo 13.70. Using the SetEnvIf directive
SetEnvIf User-Agent ".*MSIE.*" \
         nokeepalive ssl-unclean-shutdown \
         downgrade-1.0 force-response-1.0

Note that for the /etc/httpd/conf.d/ssl.conf file to be present, the mod_ssl needs to be installed. Refer to Sección 13.1.8, “Setting Up an SSL Server” for more information on how to install and configure an SSL server.

13.1.5.3. Common Multi-Processing Module Directives

The Multi-Processing Module (MPM) directives allow you to customize the behavior of a particular MPM specific server-pool. Since its characteristics differ depending on which MPM is used, the directives are embedded in IfModule. By default, the server-pool is defined for both the prefork and worker MPMs.
The following MPM directives are commonly used in /etc/httpd/conf/httpd.conf:
MaxClients
The MaxClients directive allows you to specify the maximum number of simultaneously connected clients to process at one time. It takes the following form:
MaxClients number
A high number can improve the performance of the server, although it is not recommended to exceed 256 when using the prefork MPM.
Ejemplo 13.71. Using the MaxClients directive
MaxClients 256

MaxRequestsPerChild
The MaxRequestsPerChild directive allows you to specify the maximum number of request a child process can serve before it dies. It takes the following form:
MaxRequestsPerChild number
Setting the number to 0 allows unlimited number of requests.
The MaxRequestsPerChild directive is used to prevent long-lived processes from causing memory leaks.
Ejemplo 13.72. Using the MaxRequestsPerChild directive
MaxRequestsPerChild 4000

MaxSpareServers
The MaxSpareServers directive allows you to specify the maximum number of spare child processes. It takes the following form:
MaxSpareServers number
This directive is used by the prefork MPM only.
Ejemplo 13.73. Using the MaxSpareServers directive
MaxSpareServers 20

MaxSpareThreads
The MaxSpareThreads directive allows you to specify the maximum number of spare server threads. It takes the following form:
MaxSpareThreads number
The number must be greater than or equal to the sum of MinSpareThreads and ThreadsPerChild. This directive is used by the worker MPM only.
Ejemplo 13.74. Using the MaxSpareThreads directive
MaxSpareThreads 75

MinSpareServers
The MinSpareServers directive allows you to specify the minimum number of spare child processes. It takes the following form:
MinSpareServers number
Note that a high number can create a heavy processing load on the server. This directive is used by the prefork MPM only.
Ejemplo 13.75. Using the MinSpareServers directive
MinSpareServers 5

MinSpareThreads
The MinSpareThreads directive allows you to specify the minimum number of spare server threads. It takes the following form:
MinSpareThreads number
This directive is used by the worker MPM only.
Ejemplo 13.76. Using the MinSpareThreads directive
MinSpareThreads 75

StartServers
The StartServers directive allows you to specify the number of child processes to create when the service is started. It takes the following form:
StartServers number
Since the child processes are dynamically created and terminated according to the current traffic load, it is usually not necessary to change this value.
Ejemplo 13.77. Using the StartServers directive
StartServers 8

ThreadsPerChild
The ThreadsPerChild directive allows you to specify the number of threads a child process can create. It takes the following form:
ThreadsPerChild number
This directive is used by the worker MPM only.
Ejemplo 13.78. Using the ThreadsPerChild directive
ThreadsPerChild 25

13.1.6. Working with Modules

Being a modular application, the httpd service is distributed along with a number of Dynamic Shared Objects (DSOs), which can be dynamically loaded or unloaded at runtime as necessary. By default, these modules are located in /usr/lib/httpd/modules/ on 32-bit and in /usr/lib64/httpd/modules/ on 64-bit systems.

13.1.6.1. Loading a Module

To load a particular DSO module, use the LoadModule directive as described in Sección 13.1.5.1, “Common httpd.conf Directives”. Note that modules provided by a separate package often have their own configuration file in the /etc/httpd/conf.d/ directory.
Ejemplo 13.79. Loading the mod_ssl DSO
LoadModule ssl_module modules/mod_ssl.so

Once you are finished, restart the web server to reload the configuration. Refer to Sección 13.1.4.3, “Restarting the Service” for more information on how to restart the httpd service.

13.1.6.2. Writing a Module

If you intend to create a new DSO module, make sure you have the httpd-devel package installed. To do so, type the following at a shell prompt as root:
yum install httpd-devel
This package contains the include files, the header files, and the APache eXtenSion (apxs) utility required to compile a module.
Once written, you can build the module with the following command:
apxs -i -a -c module_name.c
If the build was successful, you should be able to load the module the same way as any other module that is distributed with the Apache HTTP Server.

13.1.7. Setting Up Virtual Hosts

The Apache HTTP Server's built in virtual hosting allows the server to provide different information based on which IP address, hostname, or port is being requested.
To create a name-based virtual host, find the virtual host container provided in /etc/httpd/conf/httpd.conf as an example, remove the hash sign (that is, #) from the beginning of each line, and customize the options according to your requirements as shown in Ejemplo 13.80, “Sample virtual host configuration”.
Ejemplo 13.80. Sample virtual host configuration
NameVirtualHost penguin.example.com:80

<VirtualHost penguin.example.com:80>
    ServerAdmin webmaster@penguin.example.com
    DocumentRoot /www/docs/penguin.example.com
    ServerName penguin.example.com:80
    ErrorLog logs/penguin.example.com-error_log
    CustomLog logs/penguin.example.com-access_log common
</VirtualHost>

Note that ServerName must be a valid DNS name assigned to the machine. The <VirtualHost> container is highly customizable, and accepts most of the directives available within the main server configuration. Directives that are not supported within this container include User and Group, which were replaced by SuexecUserGroup.

Changing the port number

If you configure a virtual host to listen on a non-default port, make sure you update the Listen directive in the global settings section of the /etc/httpd/conf/httpd.conf file accordingly.
To activate a newly created virtual host, the web server has to be restarted first. Refer to Sección 13.1.4.3, “Restarting the Service” for more information on how to restart the httpd service.

13.1.8. Setting Up an SSL Server

Secure Sockets Layer (SSL) is a cryptographic protocol that allows a server and a client to communicate securely. Along with its extended and improved version called Transport Layer Security (TLS), it ensures both privacy and data integrity. The Apache HTTP Server in combination with mod_ssl, a module that uses the OpenSSL toolkit to provide the SSL/TLS support, is commonly referred to as the SSL server.
Unlike a regular HTTP connection that can be read and possibly modified by anybody who is able to intercept it, the use of mod_ssl prevents any inspection or modification of the transmitted content. This section provides basic information on how to enable this module in the Apache HTTP Server configuration, and guides you through the process of generating private keys and self-signed certificates.

13.1.8.1. An Overview of Certificates and Security

Secure communication is based on the use of keys. In conventional or symmetric cryptography, both ends of the transaction have the same key they can use to decode each other's transmissions. On the other hand, in public or asymmetric cryptography, two keys co-exist: a private key that is kept a secret, and a public key that is usually shared with the public. While the data encoded with the public key can only be decoded with the private key, data encoded with the private key can in turn only be decoded with the public key.
To provide secure communications using SSL, an SSL server must use a digital certificate signed by a Certificate Authority (CA). The certificate lists various attributes of the server (that is, the server hostname, the name of the company, its location, etc.), and the signature produced using the CA's private key. This signature ensures that a particular certificate authority has issued the certificate, and that the certificate has not been modified in any way.
When a web browser establishes a new SSL connection, it checks the certificate provided by the web server. If the certificate does not have a signature from a trusted CA, or if the hostname listed in the certificate does not match the hostname used to establish the connection, it refuses to communicate with the server and usually presents a user with an appropriate error message.
By default, most web browsers are configured to trust a set of widely used certificate authorities. Because of this, an appropriate CA should be chosen when setting up a secure server, so that target users can trust the connection, otherwise they will be presented with an error message, and will have to accept the certificate manually. Since encouraging users to override certificate errors can allow an attacker to intercept the connection, you should use a trusted CA whenever possible. For more information on this, see Tabla 13.22, “CA lists for most common web browsers”.
Tabla 13.22. CA lists for most common web browsers
Web Browser Link
Mozilla Firefox Mozilla root CA list.
Opera The Opera Rootstore.
Internet Explorer Windows root certificate program members.

When setting up an SSL server, you need to generate a certificate request and a private key, and then send the certificate request, proof of the company's identity, and payment to a certificate authority. Once the CA verifies the certificate request and your identity, it will send you a signed certificate you can use with your server. Alternatively, you can create a self-signed certificate that does not contain a CA signature, and thus should be used for testing purposes only.

13.1.8.2. Enabling the mod_ssl Module

If you intend to set up an SSL server, make sure you have the mod_ssl (the mod_ssl module) and openssl (the OpenSSL toolkit) packages installed. To do so, type the following at a shell prompt as root:
yum install mod_ssl openssl
This will create the mod_ssl configuration file at /etc/httpd/conf.d/ssl.conf, which is included in the main Apache HTTP Server configuration file by default. For the module to be loaded, restart the httpd service as described in Sección 13.1.4.3, “Restarting the Service”.

13.1.8.3. Using an Existing Key and Certificate

If you have a previously created key and certificate, you can configure the SSL server to use these files instead of generating new ones. There are only two situations where this is not possible:
  1. You are changing the IP address or domain name.
    Certificates are issued for a particular IP address and domain name pair. If one of these values changes, the certificate becomes invalid.
  2. You have a certificate from VeriSign, and you are changing the server software.
    VeriSign, a widely used certificate authority, issues certificates for a particular software product, IP address, and domain name. Changing the software product renders the certificate invalid.
In either of the above cases, you will need to obtain a new certificate. For more information on this topic, refer to Sección 13.1.8.4, “Generating a New Key and Certificate”.
If you wish to use an existing key and certificate, move the relevant files to the /etc/pki/tls/private/ and /etc/pki/tls/certs/ directories respectively. You can do so by running the following commands as root:
mv key_file.key /etc/pki/tls/private/hostname.key
mv certificate.crt /etc/pki/tls/certs/hostname.crt
Then add the following lines to the /etc/httpd/conf.d/ssl.conf configuration file:
SSLCertificateFile /etc/pki/tls/certs/hostname.crt
SSLCertificateKeyFile /etc/pki/tls/private/hostname.key
To load the updated configuration, restart the httpd service as described in Sección 13.1.4.3, “Restarting the Service”.
Ejemplo 13.81. Using a key and certificate from the Red Hat Secure Web Server
~]# mv /etc/httpd/conf/httpsd.key /etc/pki/tls/private/penguin.example.com.key
~]# mv /etc/httpd/conf/httpsd.crt /etc/pki/tls/certs/penguin.example.com.crt

13.1.8.4. Generating a New Key and Certificate

In order to generate a new key and certificate pair, you must to have the crypto-utils package installed in your system. As root, you can install it by typing the following at a shell prompt:
yum install crypto-utils
This package provides a set of tools to generate and manage SSL certificates and private keys, and includes genkey, the Red Hat Keypair Generation utility that will guide you through the key generation process.

Replacing an existing certificate

If the server already has a valid certificate and you are replacing it with a new one, specify a different serial number. This ensures that client browsers are notified of this change, update to this new certificate as expected, and do not fail to access the page. To create a new certificate with a custom serial number, as root, use the following command instead of genkey:
openssl req -x509 -new -set_serial number -key hostname.key -out hostname.crt

Remove a previously created key

If there already is a key file for a particular hostname in your system, genkey will refuse to start. In this case, remove the existing file using the following command as root:
rm /etc/pki/tls/private/hostname.key
To run the utility, as root, run the genkey command followed by the appropriate hostname (for example, penguin.example.com):
genkey hostname
To complete the key and certificate creation, take the following steps:
  1. Review the target locations in which the key and certificate will be stored.
    Running the genkey utility
    Running the genkey utility
    Figura 13.1. Running the genkey utility

    Use the Tab key to select the Next button, and press Enter to proceed to the next screen.
  2. Using the Up and down arrow keys, select the suitable key size. Note that while the large key increases the security, it also increases the response time of your server. Because of this, the recommended option is 1024 bits.
    Selecting the key size
    Selecting the key size
    Figura 13.2. Selecting the key size

    Once finished, use the Tab key to select the Next button, and press Enter to initiate the random bits generation process. Depending on the selected key size, this may take some time.
  3. Decide whether you wish to send a certificate request to a certificate authority.
    Generating a certificate request
    Generating a certificate request
    Figura 13.3. Generating a certificate request

    Use the Tab key to select Yes to compose a certificate request, or No to generate a self-signed certificate. Then press Enter to confirm your choice.
  4. Using the Spacebar key, enable ([*]) or disable ([ ]) the encryption of the private key.
    Encrypting the private key
    Encrypting the private key
    Figura 13.4. Encrypting the private key

    Use the Tab key to select the Next button, and press Enter to proceed to the next screen.
  5. If you have enabled the private key encryption, enter an adequate passphrase. Note that for security reasons, it is not displayed as you type, and it must be at least five characters long.
    Entering a passphrase
    Entering a passphrase
    Figura 13.5. Entering a passphrase

    Use the Tab key to select the Next button, and press Enter to proceed to the next screen.

    Do not forget the passphrase

    Entering the correct passphrase is required in order for the server to start. If you lose it, you will need to generate a new key and certificate.
  6. Customize the certificate details.
    Specifying certificate information
    Specifying certificate information
    Figura 13.6. Specifying certificate information

    Use the Tab key to select the Next button, and press Enter to finish the key generation.
  7. If you have previously enabled the certificate request generation, you will be prompted to send it to a certificate authority.
    Instructions on how to send a certificate request
    Instructions on how to send a certificate request
    Figura 13.7. Instructions on how to send a certificate request

    Press Enter to return to a shell prompt.
Once generated, add the key and certificate locations to the /etc/httpd/conf.d/ssl.conf configuration file:
SSLCertificateFile /etc/pki/tls/certs/hostname.crt
SSLCertificateKeyFile /etc/pki/tls/private/hostname.key
Finally, restart the httpd service as described in Sección 13.1.4.3, “Restarting the Service”, so that the updated configuration is loaded.

13.1.9. Recursos adicionales

To learn more about the Apache HTTP Server, refer to the following resources.

13.1.9.1. Documentación instalada

http://localhost/manual/
The official documentation for the Apache HTTP Server with the full description of its directives and available modules. Note that in order to access this documentation, you must have the httpd-manual package installed, and the web server must be running.
man httpd
The manual page for the httpd service containing the complete list of its command line options.
man genkey
The manual page for genkey containing the full documentation on its usage.

13.1.9.2. Sitios Web útiles

http://httpd.apache.org/
The official website for the Apache HTTP Server with documentation on all the directives and default modules.
http://www.modssl.org/
The official website for the mod_ssl module.
http://www.openssl.org/
The OpenSSL home page containing further documentation, frequently asked questions, links to the mailing lists, and other useful resources.

Capítulo 14. Mail Servers

Email was born in the 1960s. The mailbox was a file in a user's home directory that was readable only by that user. Primitive mail applications appended new text messages to the bottom of the file, making the user wade through the constantly growing file to find any particular message. This system was only capable of sending messages to users on the same system.
The first network transfer of an electronic mail message file took place in 1971 when a computer engineer named Ray Tomlinson sent a test message between two machines via ARPANET—the precursor to the Internet. Communication via email soon became very popular, comprising 75 percent of ARPANET's traffic in less than two years.
Today, email systems based on standardized network protocols have evolved into some of the most widely used services on the Internet. Fedora offers many advanced applications to serve and access email.
This chapter reviews modern email protocols in use today, and some of the programs designed to send and receive email.

14.1. Protocolos de correo electrónico

Hoy día, el correo electrónico es entregado usando una arquitectura cliente/servidor. Un mensaje de correo electrónico es creado usando un programa de correo cliente. Este programa luego envía el mensaje a un servidor. El servidor luego lo redirige al servidor de correo del recipiente y allí se le suministra al cliente de correo del recipiente.
Para permitir todo este proceso, existe una variedad de protocolos de red estándar que permiten que diferentes máquinas, a menudo ejecutando sistemas operativos diferentes y usando diferentes programas de correo, envíen y reciban correo electrónico o email.
Los protocolos que se indican a continuación son los que más se utilizan para transferir correo electrónico.

14.1.1. Protocolos de transporte de correo

La entrega de correo desde una aplicación cliente a un servidor, y desde un servidor origen al servidor destino es manejada por el Protocolo simple de transferencia de correo (Simple Mail Transfer Protocol o SMTP).

14.1.1.1. SMTP

El objetivo principal del protocolo simple de transferencia de correo, SMTP, es transmitir correo entre servidores de correo. Sin embargo, es crítico para los clientes de correo también. Para poder enviar correo, el cliente envia el mensaje a un servidor de correo saliente, el cual luego contacta al servidor de correo de destino para la entrega. Por esta razón, es necesario especificar un servidor SMTP cuando se esté configurando un cliente de correo.
Under Fedora, a user can configure an SMTP server on the local machine to handle mail delivery. However, it is also possible to configure remote SMTP servers for outgoing mail.
Un punto importante sobre el protocolo SMTP es que no requiere autenticación. Esto permite que cualquiera en Internet puede enviar correo a cualquier otra persona o inclusive a grandes grupos de personas. Esta característica de SMTP es lo que hace posible el correo basura o spam. Los servidores SMTP modernos intentan minimizar este comportamiento permitiendo que sólo los hosts conocidos accedan al servidor SMTP. Los servidores que no ponen tales restricciones son llamados servidores open relay.
Fedora provides the Postfix and Sendmail SMTP programs.

14.1.2. Protocolos de acceso a correo

Hay dos protocolos principales usados por las aplicaciones de correo cliente para recuperar correo desde los servidores de correo: el Post Office Protocol (POP) y el Internet Message Access Protocol (IMAP).

14.1.2.1. POP

The default POP server under Fedora is Dovecot and is provided by the dovecot package.

Installing the dovecot package

In order to use Dovecot, first ensure the dovecot package is installed on your system by running, as root:
yum install dovecot
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
When using a POP server, email messages are downloaded by email client applications. By default, most POP email clients are automatically configured to delete the message on the email server after it has been successfully transferred, however this setting usually can be changed.
POP is fully compatible with important Internet messaging standards, such as Multipurpose Internet Mail Extensions (MIME), which allow for email attachments.
POP works best for users who have one system on which to read email. It also works well for users who do not have a persistent connection to the Internet or the network containing the mail server. Unfortunately for those with slow network connections, POP requires client programs upon authentication to download the entire content of each message. This can take a long time if any messages have large attachments.
The most current version of the standard POP protocol is POP3.
There are, however, a variety of lesser-used POP protocol variants:
  • APOPPOP3 with MDS (Monash Directory Service) authentication. An encoded hash of the user's password is sent from the email client to the server rather then sending an unencrypted password.
  • KPOPPOP3 with Kerberos authentication.
  • RPOPPOP3 with RPOP authentication. This uses a per-user ID, similar to a password, to authenticate POP requests. However, this ID is not encrypted, so RPOP is no more secure than standard POP.
For added security, it is possible to use Secure Socket Layer (SSL) encryption for client authentication and data transfer sessions. This can be enabled by using the pop3s service, or by using the /usr/sbin/stunnel application. For more information on securing email communication, refer to Sección 14.5.1, “Comunicación segura”.

14.1.2.2. IMAP

The default IMAP server under Fedora is Dovecot and is provided by the dovecot package. Refer to Sección 14.1.2.1, “POP” for information on how to install Dovecot.
When using an IMAP mail server, email messages remain on the server where users can read or delete them. IMAP also allows client applications to create, rename, or delete mail directories on the server to organize and store email.
IMAP is particularly useful for users who access their email using multiple machines. The protocol is also convenient for users connecting to the mail server via a slow connection, because only the email header information is downloaded for messages until opened, saving bandwidth. The user also has the ability to delete messages without viewing or downloading them.
For convenience, IMAP client applications are capable of caching copies of messages locally, so the user can browse previously read messages when not directly connected to the IMAP server.
IMAP, like POP, is fully compatible with important Internet messaging standards, such as MIME, which allow for email attachments.
For added security, it is possible to use SSL encryption for client authentication and data transfer sessions. This can be enabled by using the imaps service, or by using the /usr/sbin/stunnel program. For more information on securing email communication, refer to Sección 14.5.1, “Comunicación segura”.
Other free, as well as commercial, IMAP clients and servers are available, many of which extend the IMAP protocol and provide additional functionality.

14.1.2.3. Dovecot

The imap-login and pop3-login processes which implement the IMAP and POP3 protocols are spawned by the master dovecot daemon included in the dovecot package. The use of IMAP and POP is configured through the /etc/dovecot/dovecot.conf configuration file; by default dovecot runs IMAP and POP3 together with their secure versions using SSL. To configure dovecot to use POP, complete the following steps:
  1. Edit the /etc/dovecot/dovecot.conf configuration file to make sure the protocols variable is uncommented (remove the hash sign (#) at the beginning of the line) and contains the pop3 argument. For example:
    protocols = imap imaps pop3 pop3s
    When the protocols variable is left commented out, dovecot will use the default values specified for this variable.
  2. Make that change operational for the current session by running the following command as root:
    systemctl restart dovecot.service
  3. Haga que ese cambio sea operacional después del siguiente reinicio ejecutando el comando:
    systemctl enable dovecot.service

    The dovecot service starts the POP3 server

    Please note that dovecot only reports that it started the IMAP server, but also starts the POP3 server.
Unlike SMTP, both IMAP and POP3 require connecting clients to authenticate using a username and password. By default, passwords for both protocols are passed over the network unencrypted.
To configure SSL on dovecot:
  • Edit the /etc/pki/dovecot/dovecot-openssl.conf configuration file as you prefer. However, in a typical installation, this file does not require modification.
  • Rename, move or delete the files /etc/pki/dovecot/certs/dovecot.pem and /etc/pki/dovecot/private/dovecot.pem.
  • Execute the /usr/libexec/dovecot/mkcert.sh script which creates the dovecot self signed certificates. These certificates are copied in the /etc/pki/dovecot/certs and /etc/pki/dovecot/private directories. To implement the changes, restart dovecot by typing the following at a shell prompt as root:
    systemctl restart dovecot.service
More details on dovecot can be found online at http://www.dovecot.org.

14.2. Clasificaciones de los programas de correo

En general, todas las aplicaciones de email caen en al menos una de tres clasificaciones. Cada clasificación juega un papel específico en el proceso de mover y administrar los mensajes de correo. Mientras que la mayoría de los usuarios sólo están al tanto del programa de correo específico que usan para recibir o enviar mensajes, cada uno es importante para asegurar que el mensaje llegue a su destino correcto.

14.2.1. Mail Transport Agent

A Mail Transport Agent (MTA) transports email messages between hosts using SMTP. A message may involve several MTAs as it moves to its intended destination.
Aunque la entrega de mensajes entre máquinas puede parecer bien simple, el proceso completo de decidir si un MTA particular puede o debería aceptar un mensaje para ser repartido, es más bien complicado. Además, debido a los problemas de spam, el uso de un MTA particular está usualmente restringido por la configuración del MTA o por la configuración de acceso a la red en la que reside el MTA.
Muchos programas clientes de correo modernos pueden actuar como un MTA cuando estén enviando correo. Sin embargo, no se debería confundir esta acción con el papel de un verdadero MTA. La única razón por la que los programas de correo cliente son capaces de enviar mensajes como un MTA es porque el host ejecutando la aplicación no tiene su propio MTA. Esto es particularmente cierto para programas de correo cliente o para sistemas que no están basados en el sistema operativo UNIX. Sin embargo, estos programas clientes sólo envían mensajes salientes a un MTA para el cual estan autorizados a utilizar y no entregan el mensaje directamente al servidor de correos del recipiente.
Since Fedora offers two MTAs—Postfix and Sendmail—email client programs are often not required to act as an MTA. Fedora also includes a special purpose MTA called Fetchmail.
For more information on Postfix, Sendmail, and Fetchmail, refer to Sección 14.3, “Agentes de transporte de correo”.

14.2.2. Mail Delivery Agent

A Mail Delivery Agent (MDA) is invoked by the MTA to file incoming email in the proper user's mailbox. In many cases, the MDA is actually a Local Delivery Agent (LDA), such as mail or Procmail.
Cualquier programa que maneje la entrega de mensajes hasta el punto en que puede ser leído por una aplicación cliente de correos se puede considerar un MDA. Por esta razón, algunos MTAs (tales como Sendmail y Postfix) pueden tener el papel de un MDA cuando ellos anexan nuevos mensajes de correo al archivo spool de correo del usuario. En general, los MDAs no transportan mensajes entre sistemas tampoco proporcionan una interfaz de usuario; los MDAs distribuyen y clasifican mensajes en la máquina local para que lo accese una aplicación cliente de correo.

14.2.3. Mail User Agent

A Mail User Agent (MUA) is synonymous with an email client application. An MUA is a program that, at the very least, allows a user to read and compose email messages. Many MUAs are capable of retrieving messages via the POP or IMAP protocols, setting up mailboxes to store messages, and sending outbound messages to an MTA.
MUAs may be graphical, such as Evolution, or have simple text-based interfaces, such as pine.

14.3. Agentes de transporte de correo

Fedora offers two primary MTAs: Postfix and Sendmail. Postfix is configured as the default MTA, although it is easy to switch the default MTA to Sendmail. To switch the default MTA to Sendmail, as root, you can either uninstall Postfix or use the following command to switch to Sendmail:
alternatives --config mta
You can also use the following command to enable/disable the desired service:
systemctl enable|disable service.service

14.3.1. Postfix

Postfix, originalmente desarrollado en IBM por el experto de seguridad y programador Wietse Venema, es un MTA compatible con Sendmail diseñado para ser seguro, rápido y fácil de configurar.
Postfix utiliza un diseño modular para mejorar la seguridad, en el que los procesos pequeños con privilegios limitados son lanzados por un demonio master. Los procesos más pequeños, con menos privilegios, realizan tareas muy específicas relacionada con las diferentes etapas de la entrega de correos y se ejecutan en un ambiente de cambio de root para limitar los efectos de ataques.
Configuring Postfix to accept network connections from hosts other than the local computer takes only a few minor changes in its configuration file. Yet for those with more complex needs, Postfix provides a variety of configuration options, as well as third party add-ons that make it a very versatile and full-featured MTA.
Los archivos de configuración de Postfix son legibles y aceptan hasta 250 directrices. A diferencia de Sendmail, no se requiere procesar ninguna macro para que los cambios tomen efecto y la mayoría de las opciones usadas frecuentemente se describen en archivos muy bien comentados.

14.3.1.1. La instalación predeterminada de Postfix

The Postfix executable is /usr/sbin/postfix. This daemon launches all related processes needed to handle mail delivery.
Postfix stores its configuration files in the /etc/postfix/ directory. The following is a list of the more commonly used files:
  • access — Used for access control, this file specifies which hosts are allowed to connect to Postfix.
  • main.cf — The global Postfix configuration file. The majority of configuration options are specified in this file.
  • master.cf — Specifies how Postfix interacts with various processes to accomplish mail delivery.
  • transport — Maps email addresses to relay hosts.
The aliases file can be found in the /etc/ directory. This file is shared between Postfix and Sendmail. It is a configurable list required by the mail protocol that describes user ID aliases.

Configuring Postfix as a server for other clients

The default /etc/postfix/main.cf file does not allow Postfix to accept network connections from a host other than the local computer. For instructions on configuring Postfix as a server for other clients, refer to Sección 14.3.1.2, “Configuración básica de Postfix”.
Restart the postfix service after changing any options in the configuration files under the /etc/postfix directory in order for those changes to take effect. To do so, run the following command as root:
systemctl restart postfix.service

14.3.1.2. Configuración básica de Postfix

By default, Postfix does not accept network connections from any host other than the local host. Perform the following steps as root to enable mail delivery for other hosts on the network:
  • Edit the /etc/postfix/main.cf file with a text editor, such as vi.
  • Uncomment the mydomain line by removing the hash sign (#), and replace domain.tld with the domain the mail server is servicing, such as example.com.
  • Uncomment the myorigin = $mydomain line.
  • Uncomment the myhostname line, and replace host.domain.tld with the hostname for the machine.
  • Uncomment the mydestination = $myhostname, localhost.$mydomain line.
  • Uncomment the mynetworks line, and replace 168.100.189.0/28 with a valid network setting for hosts that can connect to the server.
  • Uncomment the inet_interfaces = all line.
  • Comment the inet_interfaces = localhost line.
  • Restart the postfix service.
Luego de completar estos pasos, el host acepta correos externos.
Postfix has a large assortment of configuration options. One of the best ways to learn how to configure Postfix is to read the comments within the /etc/postfix/main.cf configuration file. Additional resources including information about Postfix configuration, SpamAssassin integration, or detailed descriptions of the /etc/postfix/main.cf parameters are available online at http://www.postfix.org/.

14.3.1.3. Using Postfix with LDAP

Postfix can use an LDAP directory as a source for various lookup tables (e.g.: aliases, virtual, canonical, etc.). This allows LDAP to store hierarchical user information and Postfix to only be given the result of LDAP queries when needed. By not storing this information locally, administrators can easily maintain it.
14.3.1.3.1. The /etc/aliases lookup example
The following is a basic example for using LDAP to look up the /etc/aliases file. Make sure your /etc/postfix/main.cf contains the following:
alias_maps = hash:/etc/aliases, ldap:/etc/postfix/ldap-aliases.cf
Create a /etc/postfix/ldap-aliases.cf file if you do not have one created already and make sure it contains the following:
server_host = ldap.example.com
search_base = dc=example, dc=com
where ldap.example.com, example, and com are parameters that need to be replaced with specification of an existing available LDAP server.

The /etc/postfix/ldap-aliases.cf file

The /etc/postfix/ldap-aliases.cf file can specify various parameters, including parameters that enable LDAP SSL and STARTTLS. For more information, refer to the ldap_table(5) man page.
For more information on LDAP, refer to Sección 15.1, “OpenLDAP”.

14.3.2. Sendmail

Sendmail's core purpose, like other MTAs, is to safely transfer email among hosts, usually using the SMTP protocol. However, Sendmail is highly configurable, allowing control over almost every aspect of how email is handled, including the protocol used. Many system administrators elect to use Sendmail as their MTA due to its power and scalability.

14.3.2.1. Propósitos y limitaciones

It is important to be aware of what Sendmail is and what it can do, as opposed to what it is not. In these days of monolithic applications that fulfill multiple roles, Sendmail may seem like the only application needed to run an email server within an organization. Technically, this is true, as Sendmail can spool mail to each users' directory and deliver outbound mail for users. However, most users actually require much more than simple email delivery. Users usually want to interact with their email using an MUA, that uses POP or IMAP, to download their messages to their local machine. Or, they may prefer a Web interface to gain access to their mailbox. These other applications can work in conjunction with Sendmail, but they actually exist for different reasons and can operate separately from one another.
It is beyond the scope of this section to go into all that Sendmail should or could be configured to do. With literally hundreds of different options and rule sets, entire volumes have been dedicated to helping explain everything that can be done and how to fix things that go wrong. Refer to the Sección 14.6, “Recursos adicionales” for a list of Sendmail resources.
Esta sección revisa los archivos instalados con Sendmail por defecto y revisa los cambios básicos a la configuración, incluyendo cómo detener correo no deseado (spam) y también cómo extender Sendmail con el Lightweight Directory Access Protocol (LDAP).

14.3.2.2. La instalación de Sendmail por defecto

In order to use Sendmail, first ensure the sendmail package is installed on your system by running, as root:
yum install sendmail
In order to configure Sendmail, ensure the sendmail-cf package is installed on your system by running, as root:
yum install sendmail-cf
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
Before using Sendmail, the default MTA has to be switched from Postfix. For more information how to switch the default MTA refer to Sección 14.3, “Agentes de transporte de correo”.
The Sendmail executable is /usr/sbin/sendmail.
Sendmail's lengthy and detailed configuration file is /etc/mail/sendmail.cf. Avoid editing the sendmail.cf file directly. To make configuration changes to Sendmail, edit the /etc/mail/sendmail.mc file, back up the original /etc/mail/sendmail.cf, and use the following alternatives to generate a new configuration file:
  • Use the included makefile in /etc/mail/ (~]# make all -C /etc/mail/) to create a new /etc/mail/sendmail.cf configuration file. All other generated files in /etc/mail (db files) will be regenerated if needed. The old makemap commands are still usable. The make command will automatically be used by systemctl start|restart|reload sendmail.service.
  • Alternatively you may use the m4 macro processor to create a new /etc/mail/sendmail.cf. The m4 macro processor is not installed by default. Before using it to create /etc/mail/sendmail.cf, install the m4 package as root:
    yum install m4
More information on configuring Sendmail can be found in Sección 14.3.2.3, “Cambios comunes de configuración de Sendmail”.
Various Sendmail configuration files are installed in the /etc/mail/ directory including:
  • access — Specifies which systems can use Sendmail for outbound email.
  • domaintable — Specifies domain name mapping.
  • local-host-names — Specifies aliases for the host.
  • mailertable — Specifies instructions that override routing for particular domains.
  • virtusertable — Specifies a domain-specific form of aliasing, allowing multiple virtual domains to be hosted on one machine.
Several of the configuration files in /etc/mail/, such as access, domaintable, mailertable and virtusertable, must actually store their information in database files before Sendmail can use any configuration changes. To include any changes made to these configurations in their database files, run the following command, as root:
makemap hash /etc/mail/name < /etc/mail/name
where name represents the name of the configuration file to be updated. You may also restart the sendmail service for the changes to take effect by running:
systemctl restart sendmail.service
For example, to have all emails addressed to the example.com domain delivered to , add the following line to the virtusertable file:
@example.com bob@other-example.com
To finalize the change, the virtusertable.db file must be updated:
makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable
Sendmail will create an updated virtusertable.db file containing the new configuration.

14.3.2.3. Cambios comunes de configuración de Sendmail

When altering the Sendmail configuration file, it is best not to edit an existing file, but to generate an entirely new /etc/mail/sendmail.cf file.

Backup the sendmail.cf file before changing its content

Before changing the sendmail.cf file, it is a good idea to create a backup copy.
To add the desired functionality to Sendmail, edit the /etc/mail/sendmail.mc file as root. Once you are finished, restart the sendmail service and, if the m4 package is installed, the m4 macro processor will automatically generate a new sendmail.cf configuration file:
systemctl restart sendmail.service

Configuring Sendmail as a server for other clients

The default sendmail.cf file does not allow Sendmail to accept network connections from any host other than the local computer. To configure Sendmail as a server for other clients, edit the /etc/mail/sendmail.mc file, and either change the address specified in the Addr= option of the DAEMON_OPTIONS directive from 127.0.0.1 to the IP address of an active network device or comment out the DAEMON_OPTIONS directive all together by placing dnl at the beginning of the line. When finished, regenerate /etc/mail/sendmail.cf by restarting the service:
systemctl restart sendmail.service
The default configuration which ships with Fedora works for most SMTP-only sites. However, it does not work for UUCP (UNIX-to-UNIX Copy Protocol) sites. If using UUCP mail transfers, the /etc/mail/sendmail.mc file must be reconfigured and a new /etc/mail/sendmail.cf file must be generated.
Consult the /usr/share/sendmail-cf/README file before editing any files in the directories under the /usr/share/sendmail-cf directory, as they can affect the future configuration of the /etc/mail/sendmail.cf file.

14.3.2.4. Creación de máscaras

One common Sendmail configuration is to have a single machine act as a mail gateway for all machines on the network. For instance, a company may want to have a machine called mail.example.com that handles all of their email and assigns a consistent return address to all outgoing mail.
In this situation, the Sendmail server must masquerade the machine names on the company network so that their return address is user@example.com instead of user@host.example.com.
To do this, add the following lines to /etc/mail/sendmail.mc:
FEATURE(always_add_domain)dnl
FEATURE(`masquerade_entire_domain')dnl
FEATURE(`masquerade_envelope')dnl
FEATURE(`allmasquerade')dnl
MASQUERADE_AS(`bigcorp.com.')dnl
MASQUERADE_DOMAIN(`bigcorp.com.')dnl
MASQUERADE_AS(bigcorp.com)dnl
After generating a new sendmail.cf using the m4 macro processor, this configuration makes all mail from inside the network appear as if it were sent from bigcorp.com.

14.3.2.5. Detener el correo basura

El correo basura se puede definir como correo no deseado e innecesario recibido por un usuario que nunca solicitó tal comunicación. Es un abuso costoso y molesto de las comunicaciones de Internet estándar.
Sendmail makes it relatively easy to block new spamming techniques being employed to send junk email. It even blocks many of the more usual spamming methods by default. Main anti-spam features available in sendmail are header checks, relaying denial (default from version 8.9), access database and sender information checks.
For example, forwarding of SMTP messages, also called relaying, has been disabled by default since Sendmail version 8.9. Before this change occurred, Sendmail directed the mail host (x.edu) to accept messages from one party (y.com) and sent them to a different party (z.net). Now, however, Sendmail must be configured to permit any domain to relay mail through the server. To configure relay domains, edit the /etc/mail/relay-domains file and restart Sendmail:
systemctl restart sendmail.service
However, many times users are bombarded with spam from other servers throughout the Internet. In these instances, Sendmail's access control features available through the /etc/mail/access file can be used to prevent connections from unwanted hosts. The following example illustrates how this file can be used to both block and specifically allow access to the Sendmail server:
badspammer.com ERROR:550 "Go away and do not spam us" tux.badspammer.com OK 10.0 RELAY
This example shows that any email sent from badspammer.com is blocked with a 550 RFC-821 compliant error code, with a message sent back to the spammer. Email sent from the tux.badspammer.com sub-domain, is accepted. The last line shows that any email sent from the 10.0.*.* network can be relayed through the mail server.
Because the /etc/mail/access.db file is a database, use the makemap command to update any changes. Do this using the following command as root:
makemap hash /etc/mail/access < /etc/mail/access
Message header analysis allows you to reject mail based on header contents. SMTP servers store information about an email's journey in the message header. As the message travels from one MTA to another, each puts in a Received header above all the other Received headers. It is important to note that this information may be altered by spammers.
The above examples only represent a small part of what Sendmail can do in terms of allowing or blocking access. Refer to the /usr/share/sendmail-cf/README for more information and examples.
Since Sendmail calls the Procmail MDA when delivering mail, it is also possible to use a spam filtering program, such as SpamAssassin, to identify and file spam for users. Refer to Sección 14.4.2.6, “Filtros de correo basura” for more information about using SpamAssassin.

14.3.2.6. Uso de Sendmail con LDAP

Using LDAP is a very quick and powerful way to find specific information about a particular user from a much larger group. For example, an LDAP server can be used to look up a particular email address from a common corporate directory by the user's last name. In this kind of implementation, LDAP is largely separate from Sendmail, with LDAP storing the hierarchical user information and Sendmail only being given the result of LDAP queries in pre-addressed email messages.
However, Sendmail supports a much greater integration with LDAP, where it uses LDAP to replace separately maintained files, such as /etc/aliases and /etc/mail/virtusertables, on different mail servers that work together to support a medium- to enterprise-level organization. In short, LDAP abstracts the mail routing level from Sendmail and its separate configuration files to a powerful LDAP cluster that can be leveraged by many different applications.
The current version of Sendmail contains support for LDAP. To extend the Sendmail server using LDAP, first get an LDAP server, such as OpenLDAP, running and properly configured. Then edit the /etc/mail/sendmail.mc to include the following:
LDAPROUTE_DOMAIN('yourdomain.com')dnl
FEATURE('ldap_routing')dnl

Advanced configuration

This is only for a very basic configuration of Sendmail with LDAP. The configuration can differ greatly from this depending on the implementation of LDAP, especially when configuring several Sendmail machines to use a common LDAP server.
Consult /usr/share/sendmail-cf/README for detailed LDAP routing configuration instructions and examples.
Next, recreate the /etc/mail/sendmail.cf file by running the m4 macro processor and again restarting Sendmail. Refer to Sección 14.3.2.3, “Cambios comunes de configuración de Sendmail” for instructions.
For more information on LDAP, refer to Sección 15.1, “OpenLDAP”.

14.3.3. Fetchmail

Fetchmail is an MTA which retrieves email from remote servers and delivers it to the local MTA. Many users appreciate the ability to separate the process of downloading their messages located on a remote server from the process of reading and organizing their email in an MUA. Designed with the needs of dial-up users in mind, Fetchmail connects and quickly downloads all of the email messages to the mail spool file using any number of protocols, including POP3 and IMAP. It can even forward email messages to an SMTP server, if necessary.

Installing the fetchmail package

In order to use Fetchmail, first ensure the fetchmail package is installed on your system by running, as root:
yum install fetchmail
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
Fetchmail is configured for each user through the use of a .fetchmailrc file in the user's home directory. If it does not already exist, create the .fetchmailrc file in your home directory
Using preferences in the .fetchmailrc file, Fetchmail checks for email on a remote server and downloads it. It then delivers it to port 25 on the local machine, using the local MTA to place the email in the correct user's spool file. If Procmail is available, it is launched to filter the email and place it in a mailbox so that it can be read by an MUA.

14.3.3.1. Opciones de configuración de Fetchmail

Although it is possible to pass all necessary options on the command line to check for email on a remote server when executing Fetchmail, using a .fetchmailrc file is much easier. Place any desired configuration options in the .fetchmailrc file for those options to be used each time the fetchmail command is issued. It is possible to override these at the time Fetchmail is run by specifying that option on the command line.
A user's .fetchmailrc file contains three classes of configuration options:
  • global options — Gives Fetchmail instructions that control the operation of the program or provide settings for every connection that checks for email.
  • server options — Specifies necessary information about the server being polled, such as the hostname, as well as preferences for specific email servers, such as the port to check or number of seconds to wait before timing out. These options affect every user using that server.
  • user options — Contains information, such as username and password, necessary to authenticate and check for email using a specified email server.
Global options appear at the top of the .fetchmailrc file, followed by one or more server options, each of which designate a different email server that Fetchmail should check. User options follow server options for each user account checking that email server. Like server options, multiple user options may be specified for use with a particular server as well as to check multiple email accounts on the same server.
Server options are called into service in the .fetchmailrc file by the use of a special option verb, poll or skip, that precedes any of the server information. The poll action tells Fetchmail to use this server option when it is run, which checks for email using the specified user options. Any server options after a skip action, however, are not checked unless this server's hostname is specified when Fetchmail is invoked. The skip option is useful when testing configurations in the .fetchmailrc file because it only checks skipped servers when specifically invoked, and does not affect any currently working configurations.
The following is a sample example of a .fetchmailrc file:
set postmaster "user1"
set bouncemail

poll pop.domain.com proto pop3
    user 'user1' there with password 'secret' is user1 here

poll mail.domain2.com
    user 'user5' there with password 'secret2' is user1 here
    user 'user7' there with password 'secret3' is user1 here
In this example, the global options specify that the user is sent email as a last resort (postmaster option) and all email errors are sent to the postmaster instead of the sender (bouncemail option). The set action tells Fetchmail that this line contains a global option. Then, two email servers are specified, one set to check using POP3, the other for trying various protocols to find one that works. Two users are checked using the second server option, but all email found for any user is sent to user1's mail spool. This allows multiple mailboxes to be checked on multiple servers, while appearing in a single MUA inbox. Each user's specific information begins with the user action.

Omitting the password from the configuration

Users are not required to place their password in the .fetchmailrc file. Omitting the with password 'password' section causes Fetchmail to ask for a password when it is launched.
Fetchmail has numerous global, server, and local options. Many of these options are rarely used or only apply to very specific situations. The fetchmail man page explains each option in detail, but the most common ones are listed in the following three sections.

14.3.3.2. Opciones globales

Each global option should be placed on a single line after a set action.
  • daemon seconds — Specifies daemon-mode, where Fetchmail stays in the background. Replace seconds with the number of seconds Fetchmail is to wait before polling the server.
  • postmaster — Specifies a local user to send mail to in case of delivery problems.
  • syslog — Specifies the log file for errors and status messages. By default, this is /var/log/maillog.

14.3.3.3. Opciones de servidor

Server options must be placed on their own line in .fetchmailrc after a poll or skip action.
  • auth auth-type — Replace auth-type with the type of authentication to be used. By default, password authentication is used, but some protocols support other types of authentication, including kerberos_v5, kerberos_v4, and ssh. If the any authentication type is used, Fetchmail first tries methods that do not require a password, then methods that mask the password, and finally attempts to send the password unencrypted to authenticate to the server.
  • interval number — Polls the specified server every number of times that it checks for email on all configured servers. This option is generally used for email servers where the user rarely receives messages.
  • port port-number — Replace port-number with the port number. This value overrides the default port number for the specified protocol.
  • proto protocol — Replace protocol with the protocol, such as pop3 or imap, to use when checking for messages on the server.
  • timeout seconds — Replace seconds with the number of seconds of server inactivity after which Fetchmail gives up on a connection attempt. If this value is not set, a default of 300 seconds is assumed.

14.3.3.4. Opciones de usuario

User options may be placed on their own lines beneath a server option or on the same line as the server option. In either case, the defined options must follow the user option (defined below).
  • fetchall — Orders Fetchmail to download all messages in the queue, including messages that have already been viewed. By default, Fetchmail only pulls down new messages.
  • fetchlimit number — Replace number with the number of messages to be retrieved before stopping.
  • flush — Deletes all previously viewed messages in the queue before retrieving new messages.
  • limit max-number-bytes — Replace max-number-bytes with the maximum size in bytes that messages are allowed to be when retrieved by Fetchmail. This option is useful with slow network links, when a large message takes too long to download.
  • password 'password' — Replace password with the user's password.
  • preconnect "command" — Replace command with a command to be executed before retrieving messages for the user.
  • postconnect "command" — Replace command with a command to be executed after retrieving messages for the user.
  • ssl — Activates SSL encryption.
  • user "username" — Replace username with the username used by Fetchmail to retrieve messages. This option must precede all other user options.

14.3.3.5. Opciones de comando de Fetchmail

Most Fetchmail options used on the command line when executing the fetchmail command mirror the .fetchmailrc configuration options. In this way, Fetchmail may be used with or without a configuration file. These options are not used on the command line by most users because it is easier to leave them in the .fetchmailrc file.
There may be times when it is desirable to run the fetchmail command with other options for a particular purpose. It is possible to issue command options to temporarily override a .fetchmailrc setting that is causing an error, as any options specified at the command line override configuration file options.

14.3.3.6. Opciones de depuración o información

Certain options used after the fetchmail command can supply important information.
  • --configdump — Displays every possible option based on information from .fetchmailrc and Fetchmail defaults. No email is retrieved for any users when using this option.
  • -s — Executes Fetchmail in silent mode, preventing any messages, other than errors, from appearing after the fetchmail command.
  • -v — Executes Fetchmail in verbose mode, displaying every communication between Fetchmail and remote email servers.
  • -V — Displays detailed version information, lists its global options, and shows settings to be used with each user, including the email protocol and authentication method. No email is retrieved for any users when using this option.

14.3.3.7. Opciones especiales

These options are occasionally useful for overriding defaults often found in the .fetchmailrc file.
  • -a — Fetchmail downloads all messages from the remote email server, whether new or previously viewed. By default, Fetchmail only downloads new messages.
  • -k — Fetchmail leaves the messages on the remote email server after downloading them. This option overrides the default behavior of deleting messages after downloading them.
  • -l max-number-bytes — Fetchmail does not download any messages over a particular size and leaves them on the remote email server.
  • --quit — Quits the Fetchmail daemon process.
More commands and .fetchmailrc options can be found in the fetchmail man page.

14.3.4. Configuración del Agente de Transporte de Correo (MTA)

A Mail Transport Agent (MTA) is essential for sending email. A Mail User Agent (MUA) such as Evolution, Thunderbird, and Mutt, is used to read and compose email. When a user sends an email from an MUA, the message is handed off to the MTA, which sends the message through a series of MTAs until it reaches its destination.
Even if a user does not plan to send email from the system, some automated tasks or system programs might use the /bin/mail command to send email containing log messages to the root user of the local system.
Fedora 17 provides two MTAs: Postfix and Sendmail. If both are installed, Postfix is the default MTA.

14.4. Agente de entrega de correo

Fedora includes two primary MDAs, Procmail and mail. Both of the applications are considered LDAs and both move email from the MTA's spool file into the user's mailbox. However, Procmail provides a robust filtering system.
This section details only Procmail. For information on the mail command, consult its man page (man mail).
Procmail entrega y filtra correo mientras es colocado en el archivo spool de correo de la máquina local. Es una herramienta eficaz, que hace un uso adecuado de los recursos del sistema y de amplio uso. Procmail desempeña un papel crítico en la entrega de correo a ser leído por las aplicaciones clientes de correo.
Procmail can be invoked in several different ways. Whenever an MTA places an email into the mail spool file, Procmail is launched. Procmail then filters and files the email for the MUA and quits. Alternatively, the MUA can be configured to execute Procmail any time a message is received so that messages are moved into their correct mailboxes. By default, the presence of /etc/procmailrc or of a ~/.procmailrc file (also called an rc file) in the user's home directory invokes Procmail whenever an MTA receives a new message.
By default, no system-wide rc files exist in the /etc/ directory and no .procmailrc files exist in any user's home directory. Therefore, to use Procmail, each user must construct a .procmailrc file with specific environment variables and rules.
Whether Procmail acts upon an email message depends upon whether the message matches a specified set of conditions or recipes in the rc file. If a message matches a recipe, then the email is placed in a specified file, is deleted, or is otherwise processed.
When Procmail starts, it reads the email message and separates the body from the header information. Next, Procmail looks for a /etc/procmailrc file and rc files in the /etc/procmailrcs directory for default, system-wide, Procmail environmental variables and recipes. Procmail then searches for a .procmailrc file in the user's home directory. Many users also create additional rc files for Procmail that are referred to within the .procmailrc file in their home directory.

14.4.1. Configuración de Procmail

El archivo de configuración de Procmail contienen variables de entorno importantes. Estas variables especifican cosas tales como, qué mensajes deben ordenarse, qué hacer con los mensajes que no coinciden con ninguna receta, etc.
These environmental variables usually appear at the beginning of the ~/.procmailrc file in the following format:
env-variable="value"
In this example, env-variable is the name of the variable and value defines the variable.
La mayor parte de los usuarios de Procmail no utilizan muchas variables de entorno y muchas de las variables de entorno más importantes ya están definidas con un valor por defecto. La mayoría de las veces tratará con las siguientes variables:
  • DEFAULT — Sets the default mailbox where messages that do not match any recipes are placed.
    The default DEFAULT value is the same as $ORGMAIL.
  • INCLUDERC — Specifies additional rc files containing more recipes for messages to be checked against. This breaks up the Procmail recipe lists into individual files that fulfill different roles, such as blocking spam and managing email lists, that can then be turned off or on by using comment characters in the user's ~/.procmailrc file.
    For example, lines in a user's .procmailrc file may look like this:
    MAILDIR=$HOME/Msgs INCLUDERC=$MAILDIR/lists.rc INCLUDERC=$MAILDIR/spam.rc
    To turn off Procmail filtering of email lists but leaving spam control in place, comment out the first INCLUDERC line with a hash sign (#).
  • LOCKSLEEP — Sets the amount of time, in seconds, between attempts by Procmail to use a particular lockfile. The default is 8 seconds.
  • LOCKTIMEOUT — Sets the amount of time, in seconds, that must pass after a lockfile was last modified before Procmail assumes that the lockfile is old and can be deleted. The default is 1024 seconds.
  • LOGFILE — The file to which any Procmail information or error messages are written.
  • MAILDIR — Sets the current working directory for Procmail. If set, all other Procmail paths are relative to this directory.
  • ORGMAIL — Specifies the original mailbox, or another place to put the messages if they cannot be placed in the default or recipe-required location.
    By default, a value of /var/spool/mail/$LOGNAME is used.
  • SUSPEND — Sets the amount of time, in seconds, that Procmail pauses if a necessary resource, such as swap space, is not available.
  • SWITCHRC — Allows a user to specify an external file containing additional Procmail recipes, much like the INCLUDERC option, except that recipe checking is actually stopped on the referring configuration file and only the recipes on the SWITCHRC-specified file are used.
  • VERBOSE — Causes Procmail to log more information. This option is useful for debugging.
Other important environmental variables are pulled from the shell, such as LOGNAME, which is the login name; HOME, which is the location of the home directory; and SHELL, which is the default shell.
A comprehensive explanation of all environments variables, as well as their default values, is available in the procmailrc man page.

14.4.2. Recetas de Procmail

New users often find the construction of recipes the most difficult part of learning to use Procmail. To some extent, this is understandable, as recipes do their message matching using regular expressions, which is a particular format used to specify qualifications for a matching string. However, regular expressions are not very difficult to construct and even less difficult to understand when read. Additionally, the consistency of the way Procmail recipes are written, regardless of regular expressions, makes it easy to learn by example. To see example Procmail recipes, refer to Sección 14.4.2.5, “Ejemplos de recetas”.
Una receta de Procmail tiene la siguiente estructura:
:0flags: lockfile-name * special-condition-character
        condition-1 * special-condition-character
        condition-2 * special-condition-character
        condition-N
        special-action-character
        action-to-perform
The first two characters in a Procmail recipe are a colon and a zero. Various flags can be placed after the zero to control how Procmail processes the recipe. A colon after the flags section specifies that a lockfile is created for this message. If a lockfile is created, the name can be specified by replacing lockfile-name .
A recipe can contain several conditions to match against the message. If it has no conditions, every message matches the recipe. Regular expressions are placed in some conditions to facilitate message matching. If multiple conditions are used, they must all match for the action to be performed. Conditions are checked based on the flags set in the recipe's first line. Optional special characters placed after the asterisk character (*) can further control the condition.
The action-to-perform argument specifies the action taken when the message matches one of the conditions. There can only be one action per recipe. In many cases, the name of a mailbox is used here to direct matching messages into that file, effectively sorting the email. Special action characters may also be used before the action is specified. Refer to Sección 14.4.2.4, “Condiciones y acciones especiales” for more information.

14.4.2.1. Recetas de entrega vs. recetas de no entrega

The action used if the recipe matches a particular message determines whether it is considered a delivering or non-delivering recipe. A delivering recipe contains an action that writes the message to a file, sends the message to another program, or forwards the message to another email address. A non-delivering recipe covers any other actions, such as a nesting block. A nesting block is a set of actions, contained in braces { }, that are performed on messages which match the recipe's conditions. Nesting blocks can be nested inside one another, providing greater control for identifying and performing actions on messages.
Cuando los mensajes coinciden con una receta de entrega, Procmail lleva a cabo la acción especificada y deja de comparar el mensaje con otras recetas. Los mensajes que coinciden con recetas de no entrega siguen siendo comparados contra otras recetas.

14.4.2.2. Indicadores

Los indicadores son muy importantes para determinar cómo o si se compararán las condiciones de una receta con un mensaje. Los siguientes indicadores son de uso común:
  • A — Specifies that this recipe is only used if the previous recipe without an A or a flag also matched this message.
  • a — Specifies that this recipe is only used if the previous recipe with an A or a flag also matched this message and was successfully completed.
  • B — Parses the body of the message and looks for matching conditions.
  • b — Uses the body in any resulting action, such as writing the message to a file or forwarding it. This is the default behavior.
  • c — Generates a carbon copy of the email. This is useful with delivering recipes, since the required action can be performed on the message and a copy of the message can continue being processed in the rc files.
  • D — Makes the egrep comparison case-sensitive. By default, the comparison process is not case-sensitive.
  • E — While similar to the A flag, the conditions in the recipe are only compared to the message if the immediately preceding the recipe without an E flag did not match. This is comparable to an else action.
  • e — The recipe is compared to the message only if the action specified in the immediately preceding recipe fails.
  • f — Uses the pipe as a filter.
  • H — Parses the header of the message and looks for matching conditions. This is the default behavior.
  • h — Uses the header in a resulting action. This is the default behavior.
  • w — Tells Procmail to wait for the specified filter or program to finish, and reports whether or not it was successful before considering the message filtered.
  • W — Is identical to w except that "Program failure" messages are suppressed.
For a detailed list of additional flags, refer to the procmailrc man page.

14.4.2.3. Especificación de un Lockfile local

Lockfiles are very useful with Procmail to ensure that more than one process does not try to alter a message simultaneously. Specify a local lockfile by placing a colon (:) after any flags on a recipe's first line. This creates a local lockfile based on the destination file name plus whatever has been set in the LOCKEXT global environment variable.
Como alternativa, puede especificar el nombre del lockfile local que se usará con esta receta después del carácter :.

14.4.2.4. Condiciones y acciones especiales

El uso de caracteres especiales antes de las condiciones y acciones de recetas de Procmail cambian el modo en que se interpretan.
The following characters may be used after the asterisk character (*) at the beginning of a recipe's condition line:
  • ! — In the condition line, this character inverts the condition, causing a match to occur only if the condition does not match the message.
  • < — Checks if the message is under a specified number of bytes.
  • > — Checks if the message is over a specified number of bytes.
Los siguientes caracteres se utilizan para realizar acciones especiales:
  • ! — In the action line, this character tells Procmail to forward the message to the specified email addresses.
  • $ — Refers to a variable set earlier in the rc file. This is often used to set a common mailbox that is referred to by various recipes.
  • | — Starts a specified program to process the message.
  • { and } — Constructs a nesting block, used to contain additional recipes to apply to matching messages.
Si no se utiliza un carácter especial al principio de la línea de acción, Procmail asume que la línea de acción está especificando el buzón en donde registrar el mensaje.

14.4.2.5. Ejemplos de recetas

Procmail es un programa extremadamente flexible. Sin embargo, como resultado de esta flexibilidad, la composición de una receta de Procmail desde cero para alcanzar un objetivo concreto, puede resultar una labor muy complicada para los usuarios nuevos.
The best way to develop the skills to build Procmail recipe conditions stems from a strong understanding of regular expressions combined with looking at many examples built by others. A thorough explanation of regular expressions is beyond the scope of this section. The structure of Procmail recipes and useful sample Procmail recipes can be found at various places on the Internet (such as http://www.iki.fi/era/procmail/links.html). The proper use and adaptation of regular expressions can be derived by viewing these recipe examples. In addition, introductory information about basic regular expression rules can be found in the grep man page.
Los ejemplos siguientes demuestran la estructura básica de las recetas Procmail y pueden suministrar la base para construcciones más elaboradas.
Una receta básica puede que ni siquiera tenga condiciones, como se demuestra en el siguiente ejemplo:
:0: new-mail.spool
The first line specifies that a local lockfile is to be created but does not specify a name, so Procmail uses the destination file name and appends the value specified in the LOCKEXT environment variable. No condition is specified, so every message matches this recipe and is placed in the single spool file called new-mail.spool, located within the directory specified by the MAILDIR environment variable. An MUA can then view messages in this file.
A basic recipe, such as this, can be placed at the end of all rc files to direct messages to a default location.
El ejemplo siguiente coincide los mensajes provenientes de una dirección de correo específica y los descarta.
:0 * ^From: spammer@domain.com /dev/null
With this example, any messages sent by spammer@domain.com are sent to the /dev/null device, deleting them.

Sending messages to /dev/null

Be certain that rules are working as intended before sending messages to /dev/null for permanent deletion. If a recipe inadvertently catches unintended messages, and those messages disappear, it becomes difficult to troubleshoot the rule.
A better solution is to point the recipe's action to a special mailbox, which can be checked from time to time to look for false positives. Once satisfied that no messages are accidentally being matched, delete the mailbox and direct the action to send the messages to /dev/null.
La receta siguiente atrapa el correo enviado a una lista de correo particular y lo coloca en una carpeta indicada.
:0: * ^(From|Cc|To).*tux-lug tuxlug
Any messages sent from the tux-lug@domain.com mailing list are placed in the tuxlug mailbox automatically for the MUA. Note that the condition in this example matches the message if it has the mailing list's email address on the From, Cc, or To lines.
Consult the many Procmail online resources available in Sección 14.6, “Recursos adicionales” for more detailed and powerful recipes.

14.4.2.6. Filtros de correo basura

Puesto que Procmail es llamado por Sendmail, Postfix y Fetchmail cuando reciben nuevos correos, se puede usar también como una herramienta poderosa para combatir correo basura.
Esto es particularmente cierto cuando Procmail es usado en conjunto con SpamAssassin. Cuando se usan juntos, estas dos aplicaciones pueden identificar rápidamente correo basura y ordenarlos o destruirlos.
SpamAssassin usa análisis de las cabeceras, de texto, listas negras, una base de datos de seguimiento de correo basura y el análisis de correo basura Bayesiano de autoaprendizaje, para identificar y marcar efectivamente el correo basura.

Installing the spamassassin package

In order to use SpamAssassin, first ensure the spamassassin package is installed on your system by running, as root:
yum install spamassassin
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
The easiest way for a local user to use SpamAssassin is to place the following line near the top of the ~/.procmailrc file:
INCLUDERC=/etc/mail/spamassassin/spamassassin-default.rc
The /etc/mail/spamassassin/spamassassin-default.rc contains a simple Procmail rule that activates SpamAssassin for all incoming email. If an email is determined to be spam, it is tagged in the header as such and the title is prepended with the following pattern:
*****SPAM*****
El cuerpo del mensaje es también marcado al principio con una lista de qué elementos provocaron que fuese considerado basura.
Para archivar correo marcado como basura, se puede usar una regla similar a lo siguiente:
:0 Hw * ^X-Spam-Status: Yes spam
This rule files all email tagged in the header as spam into a mailbox called spam.
Since SpamAssassin is a Perl script, it may be necessary on busy servers to use the binary SpamAssassin daemon (spamd) and the client application (spamc). Configuring SpamAssassin this way, however, requires root access to the host.
To start the spamd daemon, type the following command:
systemctl start spamassassin.service
To start the SpamAssassin daemon when the system is booted, run:
systemctl enable spamassassin.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.
To configure Procmail to use the SpamAssassin client application instead of the Perl script, place the following line near the top of the ~/.procmailrc file. For a system-wide configuration, place it in /etc/procmailrc:
INCLUDERC=/etc/mail/spamassassin/spamassassin-spamc.rc

14.5. Agentes de usuario de correo

Fedora offers a variety of email programs, both, graphical email client programs, such as Evolution, and text-based email programs such as mutt.
The remainder of this section focuses on securing communication between a client and a server.

14.5.1. Comunicación segura

Popular MUAs included with Fedora, such as Evolution and mutt offer SSL-encrypted email sessions.
Like any other service that flows over a network unencrypted, important email information, such as usernames, passwords, and entire messages, may be intercepted and viewed by users on the network. Additionally, since the standard POP and IMAP protocols pass authentication information unencrypted, it is possible for an attacker to gain access to user accounts by collecting usernames and passwords as they are passed over the network.

14.5.1.1. Clientes de correo electrónico seguros

Most Linux MUAs designed to check email on remote servers support SSL encryption. To use SSL when retrieving email, it must be enabled on both the email client and the server.
SSL is easy to enable on the client-side, often done with the click of a button in the MUA's configuration window or via an option in the MUA's configuration file. Secure IMAP and POP have known port numbers (993 and 995, respectively) that the MUA uses to authenticate and download messages.

14.5.1.2. Asegurar las comunicaciones de cliente de correo

Offering SSL encryption to IMAP and POP users on the email server is a simple matter.
First, create an SSL certificate. This can be done in two ways: by applying to a Certificate Authority (CA) for an SSL certificate or by creating a self-signed certificate.

Avoid using self-signed certificates

Los certificados auto-firmados solamente deberían ser usados para propósitos de prueba. Cualquier servidor usado en un ambiente de producción debería usar un certificado SSL emitido por una CA.
To create a self-signed SSL certificate for IMAP or POP, change to the /etc/pki/dovecot/ directory, edit the certificate parameters in the /etc/pki/dovecot/dovecot-openssl.conf configuration file as you prefer, and type the following commands, as root:
dovecot]# rm -f certs/dovecot.pem private/dovecot.pem
dovecot]# /usr/libexec/dovecot/mkcert.sh
Once finished, make sure you have the following configurations in your /etc/dovecot/conf.d/10-ssl.conf file:
ssl_cert = </etc/pki/dovecot/certs/dovecot.pem
ssl_key = </etc/pki/dovecot/private/dovecot.pem
Execute the systemctl restart dovecot.service command to restart the dovecot daemon.
Alternatively, the stunnel command can be used as an SSL encryption wrapper around the standard, non-secure connections to IMAP or POP services.
The stunnel utility uses external OpenSSL libraries included with Fedora to provide strong cryptography and to protect the network connections. It is recommended to apply to a CA to obtain an SSL certificate, but it is also possible to create a self-signed certificate.

Installing the stunnel package

In order to use stunnel, first ensure the stunnel package is installed on your system by running, as root:
yum install stunnel
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
To create a self-signed SSL certificate, change to the /etc/pki/tls/certs/ directory, and type the following command:
certs]# make stunnel.pem
Conteste todas las preguntas para completar el proceso.
Once the certificate is generated, create an stunnel configuration file, for example /etc/stunnel/mail.conf, with the following content:
cert = /etc/pki/tls/certs/stunnel.pem

[pop3s]
accept  = 995
connect = 110

[imaps]
accept  = 993
connect = 143
Once you start stunnel with the created configuration file using the /usr/bin/stunnel /etc/stunnel/mail.conf command, it will be possible to use an IMAP or a POP email client and connect to the email server using SSL encryption.
For more information on stunnel, refer to the stunnel man page or the documents in the /usr/share/doc/stunnel-version-number / directory, where version-number is the version number of stunnel.

14.6. Recursos adicionales

La siguiente es una lista con la documentación adicional sobre las aplicaciones de correo.

14.6.1. Documentación instalada

  • Information on configuring Sendmail is included with the sendmail and sendmail-cf packages.
    • /usr/share/sendmail-cf/README — Contains information on the m4 macro processor, file locations for Sendmail, supported mailers, how to access enhanced features, and more.
    In addition, the sendmail and aliases man pages contain helpful information covering various Sendmail options and the proper configuration of the Sendmail /etc/mail/aliases file.
  • /usr/share/doc/postfix-version-number — Contains a large amount of information about ways to configure Postfix. Replace version-number with the version number of Postfix.
  • /usr/share/doc/fetchmail-version-number — Contains a full list of Fetchmail features in the FEATURES file and an introductory FAQ document. Replace version-number with the version number of Fetchmail.
  • /usr/share/doc/procmail-version-number — Contains a README file that provides an overview of Procmail, a FEATURES file that explores every program feature, and an FAQ file with answers to many common configuration questions. Replace version-number with the version number of Procmail.
    Mientras aprende cómo Procmail funciona y cómo crear nuevas recetas, las siguientes páginas man son de gran utilidad:
    • procmail — Provides an overview of how Procmail works and the steps involved with filtering email.
    • procmailrc — Explains the rc file format used to construct recipes.
    • procmailex — Gives a number of useful, real-world examples of Procmail recipes.
    • procmailsc — Explains the weighted scoring technique used by Procmail to match a particular recipe to a message.
    • /usr/share/doc/spamassassin-version-number/ — Contains a large amount of information pertaining to SpamAssassin. Replace version-number with the version number of the spamassassin package.

14.6.2. Sitios Web útiles

  • http://www.sendmail.org/ — Offers a thorough technical breakdown of Sendmail features, documentation and configuration examples.
  • http://www.sendmail.com/ — Contains news, interviews and articles concerning Sendmail, including an expanded view of the many options available.
  • http://www.postfix.org/ — The Postfix project home page contains a wealth of information about Postfix. The mailing list is a particularly good place to look for information.
  • http://fetchmail.berlios.de/ — The home page for Fetchmail, featuring an online manual, and a thorough FAQ.
  • http://www.procmail.org/ — The home page for Procmail with links to assorted mailing lists dedicated to Procmail as well as various FAQ documents.
  • http://partmaps.org/era/procmail/mini-faq.html — An excellent Procmail FAQ, offers troubleshooting tips, details about file locking, and the use of wildcard characters.
  • http://www.uwasa.fi/~ts/info/proctips.html — Contains dozens of tips that make using Procmail much easier. Includes instructions on how to test .procmailrc files and use Procmail scoring to decide if a particular action should be taken.
  • http://www.spamassassin.org/ — The official site of the SpamAssassin project.

Capítulo 15. Servidores de directorio

15.1. OpenLDAP

LDAP (Lightweight Directory Access Protocol) is a set of open protocols used to access centrally stored information over a network. It is based on the X.500 standard for directory sharing, but is less complex and resource-intensive. For this reason, LDAP is sometimes referred to as X.500 Lite.
Like X.500, LDAP organizes information in a hierarchical manner using directories. These directories can store a variety of information such as names, addresses, or phone numbers, and can even be used in a manner similar to the Network Information Service (NIS), enabling anyone to access their account from any machine on the LDAP enabled network.
LDAP is commonly used for centrally managed users and groups, user authentication, or system configuration. It can also serve as a virtual phone directory, allowing users to easily access contact information for other users. Additionally, it can refer a user to other LDAP servers throughout the world, and thus provide an ad-hoc global repository of information. However, it is most frequently used within individual organizations such as universities, government departments, and private companies.
This section covers the installation and configuration of OpenLDAP 2.4, an open source implementation of the LDAPv2 and LDAPv3 protocols.

15.1.1. Introduction to LDAP

Using a client/server architecture, LDAP provides reliable means to create a central information directory accessible from the network. When a client attempts to modify information within this directory, the server verifies the user has permission to make the change, and then adds or updates the entry as requested. To ensure the communication is secure, the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) cryptographic protocols can be used to prevent an attacker from intercepting the transmission.

Using Mozilla NSS

The OpenLDAP suite in Fedora 17 no longer uses OpenSSL. Instead, it uses the Mozilla implementation of Network Security Services (NSS). OpenLDAP continues to work with existing certificates, keys, and other TLS configuration. For more information on how to configure it to use Mozilla certificate and key database, refer to How do I use TLS/SSL with Mozilla NSS.
The LDAP server supports several database systems, which gives administrators the flexibility to choose the best suited solution for the type of information they are planning to serve. Because of a well-defined client Application Programming Interface (API), the number of applications able to communicate with an LDAP server is numerous, and increasing in both quantity and quality.

15.1.1.1. Terminología LDAP

The following is a list of LDAP-specific terms that are used within this chapter:
entry
A single unit within an LDAP directory. Each entry is identified by its unique Distinguished Name (DN).
attribute
Information directly associated with an entry. For example, if an organization is represented as an LDAP entry, attributes associated with this organization might include an address, a fax number, etc. Similarly, people can be represented as entries with common attributes such as personal telephone number or email address.
An attribute can either have a single value, or an unordered space-separated list of values. While certain attributes are optional, other are required. Required attributes are specified using the objectClass definition, and can be found in schema files located in the /etc/openldap/slapd.d/cn=config/cn=schema/ directory.
The assertion of an attribute and its corresponding value is also referred to as a Relative Distinguished Name (RDN). Unlike distinguished names that are unique globally, a relative distinguished name is only unique per entry.
LDIF
The LDAP Data Interchange Format (LDIF) is a plain text representation of an LDAP entry. It takes the following form:
[id] dn: distinguished_name
attribute_type: attribute_valueattribute_type: attribute_value…
…
The optional id is a number determined by the application that is used to edit the entry. Each entry can contain as many attribute_type and attribute_value pairs as needed, as long as they are all defined in a corresponding schema file. A blank line indicates the end of an entry.

15.1.1.2. Características de OpenLDAP

OpenLDAP suite provides a number of important features:
  • LDAPv3 Support — Many of the changes in the protocol since LDAP version 2 are designed to make LDAP more secure. Among other improvements, this includes the support for Simple Authentication and Security Layer (SASL), Transport Layer Security (TLS), and Secure Sockets Layer (SSL) protocols.
  • LDAP Over IPC — The use of inter-process communication (IPC) enhances security by eliminating the need to communicate over a network.
  • IPv6 Support — OpenLDAP is compliant with Internet Protocol version 6 (IPv6), the next generation of the Internet Protocol.
  • LDIFv1 Support — OpenLDAP is fully compliant with LDIF version 1.
  • Updated C API — The current C API improves the way programmers can connect to and use LDAP directory servers.
  • Enhanced Standalone LDAP Server — This includes an updated access control system, thread pooling, better tools, and much more.

15.1.1.3. OpenLDAP Server Setup

The typical steps to set up an LDAP server on Fedora are as follows:
  1. Install the OpenLDAP suite. Refer to Sección 15.1.2, “Installing the OpenLDAP Suite” for more information on required packages.
  2. Customize the configuration as described in Sección 15.1.3, “Configuring an OpenLDAP Server”.
  3. Start the slapd service as described in Sección 15.1.4, “Running an OpenLDAP Server”.
  4. Use the ldapadd utility to add entries to the LDAP directory.
  5. Use the ldapsearch utility to verify that the slapd service is accessing the information correctly.

15.1.2. Installing the OpenLDAP Suite

The suite of OpenLDAP libraries and tools is provided by the following packages:
Tabla 15.1. List of OpenLDAP packages
Package Descripción
openldap A package containing the libraries necessary to run the OpenLDAP server and client applications.
openldap-clients A package containing the command line utilities for viewing and modifying directories on an LDAP server.
openldap-servers A package containing both the services and utilities to configure and run an LDAP server. This includes the Standalone LDAP Daemon, slapd.
openldap-servers-sql A package containing the SQL support module.

Additionally, the following packages are commonly used along with the LDAP server:
Tabla 15.2. List of commonly installed additional LDAP packages
Package Descripción
nss-pam-ldapd A package containing nslcd, a local LDAP name service that allows a user to perform local LDAP queries.
mod_authz_ldap
A package containing mod_authz_ldap, the LDAP authorization module for the Apache HTTP Server. This module uses the short form of the distinguished name for a subject and the issuer of the client SSL certificate to determine the distinguished name of the user within an LDAP directory. It is also capable of authorizing users based on attributes of that user's LDAP directory entry, determining access to assets based on the user and group privileges of the asset, and denying access for users with expired passwords. Note that the mod_ssl module is required when using the mod_authz_ldap module.

To install these packages, use the yum command in the following form:
yum install package
For example, to perform the basic LDAP server installation, type the following at a shell prompt as root:
yum install openldap openldap-clients openldap-servers
Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Fedora, refer to Sección 4.2.4, “Installing Packages”.

15.1.2.1. Overview of OpenLDAP Server Utilities

To perform administrative tasks, the openldap-servers package installs the following utilities along with the slapd service:
Tabla 15.3. List of OpenLDAP server utilities
Comando Descripción
slapacl Allows you to check the access to a list of attributes.
slapadd Allows you to add entries from an LDIF file to an LDAP directory.
slapauth Allows you to check a list of IDs for authentication and authorization permissions.
slapcat Allows you to pull entries from an LDAP directory in the default format and save them in an LDIF file.
slapdn Allows you to check a list of Distinguished Names (DNs) based on available schema syntax.
slapindex Allows you to re-index the slapd directory based on the current content. Run this utility whenever you change indexing options in the configuration file.
slappasswd Allows you to create an encrypted user password to be used with the ldapmodify utility, or in the slapd configuration file.
slapschema Allows you to check the compliance of a database with the corresponding schema.
slaptest Allows you to check the LDAP server configuration.

For a detailed description of these utilities and their usage, refer to the corresponding manual pages as referred to in Sección 15.1.6.1, “Documentación instalada”.

Make sure the files have correct owner

Although only root can run slapadd, the slapd service runs as the ldap user. Because of this, the directory server is unable to modify any files created by slapadd. To correct this issue, after running the slapadd utility, type the following at a shell prompt:
chown -R ldap:ldap /var/lib/ldap

Stop slapd before using these utilities

To preserve the data integrity, stop the slapd service before using slapadd, slapcat, or slapindex. You can do so by typing the following at a shell prompt as root:
systemctl stop slapd.service
For more information on how to start, stop, restart, and check the current status of the slapd service, refer to Sección 15.1.4, “Running an OpenLDAP Server”.

15.1.2.2. Overview of OpenLDAP Client Utilities

The openldap-clients package installs the following utilities which can be used to add, modify, and delete entries in an LDAP directory:
Tabla 15.4. List of OpenLDAP client utilities
Comando Descripción
ldapadd Allows you to add entries to an LDAP directory, either from a file, or from standard input. It is a symbolic link to ldapmodify -a.
ldapcompare Allows you to compare given attribute with an LDAP directory entry.
ldapdelete Allows you to delete entries from an LDAP directory.
ldapexop Allows you to perform extended LDAP operations.
ldapmodify Allows you to modify entries in an LDAP directory, either from a file, or from standard input.
ldapmodrdn Allows you to modify the RDN value of an LDAP directory entry.
ldappasswd Allows you to set or change the password for an LDAP user.
ldapsearch Allows you to search LDAP directory entries.
ldapurl Allows you to compose or decompose LDAP URLs.
ldapwhoami Allows you to perform a whoami operation on an LDAP server.

With the exception of ldapsearch, each of these utilities is more easily used by referencing a file containing the changes to be made rather than typing a command for each entry to be changed within an LDAP directory. The format of such a file is outlined in the man page for each utility.

15.1.2.3. Overview of Common LDAP Client Applications

Although there are various graphical LDAP clients capable of creating and modifying directories on the server, none of them is included in Fedora. Popular applications that can access directories in a read-only mode include Mozilla Thunderbird, Evolution, or Ekiga.

15.1.3. Configuring an OpenLDAP Server

By default, the OpenLDAP configuration is stored in the /etc/openldap/ directory. The following table highlights the most important directories and files within this directory:
Tabla 15.5. List of OpenLDAP configuration files and directories
Path Descripción
/etc/openldap/ldap.conf The configuration file for client applications that use the OpenLDAP libraries. This includes ldapadd, ldapsearch, Evolution, etc.
/etc/openldap/slapd.d/ The directory containing the slapd configuration.

Note that OpenLDAP no longer reads its configuration from the /etc/openldap/slapd.conf file. Instead, it uses a configuration database located in the /etc/openldap/slapd.d/ directory. If you have an existing slapd.conf file from a previous installation, you can convert it to the new format by running the following command as root:
slaptest -f /etc/openldap/slapd.conf -F /etc/openldap/slapd.d/
The slapd configuration consists of LDIF entries organized in a hierarchical directory structure, and the recommended way to edit these entries is to use the server utilities described in Sección 15.1.2.1, “Overview of OpenLDAP Server Utilities”.

Do not edit LDIF files directly

An error in an LDIF file can render the slapd service unable to start. Because of this, it is strongly advised that you avoid editing the LDIF files within the /etc/openldap/slapd.d/ directly.

15.1.3.1. Changing the Global Configuration

Global configuration options for the LDAP server are stored in the /etc/openldap/slapd.d/cn=config.ldif file. The following directives are commonly used:
olcAllows
The olcAllows directive allows you to specify which features to enable. It takes the following form:
olcAllows: feature
It accepts a space-separated list of features as described in Tabla 15.6, “Available olcAllows options”. The default option is bind_v2.
Tabla 15.6. Available olcAllows options
Opciones Descripción
bind_v2 Enables the acceptance of LDAP version 2 bind requests.
bind_anon_cred Enables an anonymous bind when the Distinguished Name (DN) is empty.
bind_anon_dn Enables an anonymous bind when the Distinguished Name (DN) is not empty.
update_anon Enables processing of anonymous update operations.
proxy_authz_anon Enables processing of anonymous proxy authorization control.

Ejemplo 15.1. Using the olcAllows directive
olcAllows: bind_v2 update_anon

olcConnMaxPending
The olcConnMaxPending directive allows you to specify the maximum number of pending requests for an anonymous session. It takes the following form:
olcConnMaxPending: number
The default option is 100.
Ejemplo 15.2. Using the olcConnMaxPending directive
olcConnMaxPending: 100

olcConnMaxPendingAuth
The olcConnMaxPendingAuth directive allows you to specify the maximum number of pending requests for an authenticated session. It takes the following form:
olcConnMaxPendingAuth: number
The default option is 1000.
Ejemplo 15.3. Using the olcConnMaxPendingAuth directive
olcConnMaxPendingAuth: 1000

olcDisallows
The olcDisallows directive allows you to specify which features to disable. It takes the following form:
olcDisallows: feature
It accepts a space-separated list of features as described in Tabla 15.7, “Available olcDisallows options”. No features are disabled by default.
Tabla 15.7. Available olcDisallows options
Opciones Descripción
bind_anon Disables the acceptance of anonymous bind requests.
bind_simple Disables the simple bind authentication mechanism.
tls_2_anon Disables the enforcing of an anonymous session when the STARTTLS command is received.
tls_authc Disallows the STARTTLS command when authenticated.

Ejemplo 15.4. Using the olcDisallows directive
olcDisallows: bind_anon

olcIdleTimeout
The olcIdleTimeout directive allows you to specify how many seconds to wait before closing an idle connection. It takes the following form:
olcIdleTimeout: number
This option is disabled by default (that is, set to 0).
Ejemplo 15.5. Using the olcIdleTimeout directive
olcIdleTimeout: 180

olcLogFile
The olcLogFile directive allows you to specify a file in which to write log messages. It takes the following form:
olcLogFile: file_name
The log messages are written to standard error by default.
Ejemplo 15.6. Using the olcLogFile directive
olcLogFile: /var/log/slapd.log

olcReferral
The olcReferral option allows you to specify a URL of a server to process the request in case the server is not able to handle it. It takes the following form:
olcReferral: URL
This option is disabled by default.
Ejemplo 15.7. Using the olcReferral directive
olcReferral: ldap://root.openldap.org

olcWriteTimeout
The olcWriteTimeout option allows you to specify how many seconds to wait before closing a connection with an outstanding write request. It takes the following form:
olcWriteTimeout
This option is disabled by default (that is, set to 0).
Ejemplo 15.8. Using the olcWriteTimeout directive
olcWriteTimeout: 180

15.1.3.2. Changing the Database-Specific Configuration

By default, the OpenLDAP server uses Berkeley DB (BDB) as a database back end. The configuration for this database is stored in the /etc/openldap/slapd.d/cn=config/olcDatabase={1}bdb.ldif file. The following directives are commonly used in a database-specific configuration:
olcReadOnly
The olcReadOnly directive allows you to use the database in a read-only mode. It takes the following form:
olcReadOnly: boolean
It accepts either TRUE (enable the read-only mode), or FALSE (enable modifications of the database). The default option is FALSE.
Ejemplo 15.9. Using the olcReadOnly directive
olcReadOnly: TRUE

olcRootDN
The olcRootDN directive allows you to specify the user that is unrestricted by access controls or administrative limit parameters set for operations on the LDAP directory. It takes the following form:
olcRootDN: distinguished_name
It accepts a Distinguished Name (DN). The default option is cn=Manager,dn=my-domain,dc=com.
Ejemplo 15.10. Using the olcRootDN directive
olcRootDN: cn=root,dn=example,dn=com

olcRootPW
The olcRootPW directive allows you to set a password for the user that is specified using the olcRootDN directive. It takes the following form:
olcRootPW: password
It accepts either a plain text string, or a hash. To generate a hash, use the slappaswd utility, for example:
~]$ slappaswd
New password: 
Re-enter new password: 
{SSHA}WczWsyPEnMchFf1GRTweq2q7XJcvmSxD
Ejemplo 15.11. Using the olcRootPW directive
olcRootPW: {SSHA}WczWsyPEnMchFf1GRTweq2q7XJcvmSxD

olcSuffix
The olcSuffix directive allows you to specify the domain for which to provide information. It takes the following form:
olcSuffix: domain_name
It accepts a fully qualified domain name (FQDN). The default option is dc=my-domain,dc=com.
Ejemplo 15.12. Using the olcSuffix directive
olcSuffix: dc=example,dc=com

15.1.3.3. Extending Schema

Since OpenLDAP 2.3, the /etc/openldap/slapd.d/ directory also contains LDAP definitions that were previously located in /etc/openldap/schema/. It is possible to extend the schema used by OpenLDAP to support additional attribute types and object classes using the default schema files as a guide. However, this task is beyond the scope of this chapter. For more information on this topic, refer to http://www.openldap.org/doc/admin/schema.html.

15.1.4. Running an OpenLDAP Server

This section describes how to start, stop, restart, and check the current status of the Standalone LDAP Daemon. For more information on how to manage system services in general, refer to Capítulo 8, Services and Daemons.

15.1.4.1. Starting the Service

To run the slapd service, type the following at a shell prompt as root:
systemctl start slapd.service
If you want the service to start automatically at the boot time, use the following command:
systemctl enable slapd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

15.1.4.2. Stopping the Service

To stop the running slapd service, type the following at a shell prompt as root:
systemctl stop slapd.service
To prevent the service from starting automatically at the boot time, type:
systemctl disable slapd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

15.1.4.3. Restarting the Service

To restart the running slapd service, type the following at a shell prompt as root:
systemctl restart slapd.service
This stops the service, and then starts it again. Use this command to reload the configuration.

15.1.4.4. Checking the Service Status

To check whether the service is running, type the following at a shell prompt:
systemctl is-active slapd.service

15.1.5. Configurar un sistema para la autenticación mediante OpenLDAP

In order to configure a system to authenticate using OpenLDAP, make sure that the appropriate packages are installed on both LDAP server and client machines. For information on how to set up the server, follow the instructions in Sección 15.1.2, “Installing the OpenLDAP Suite” and Sección 15.1.3, “Configuring an OpenLDAP Server”. On a client, type the following at a shell prompt as root:
yum install openldap openldap-clients nss-pam-ldapd
Capítulo 9, Configuring Authentication provides detailed instructions on how to configure applications to use LDAP for authentication.

15.1.5.1. Migrar la información de autenticación antigua al formato LDAP

The migrationtools package provides a set of shell and Perl scripts to help you migrate authentication information into an LDAP format. To install this package, type the following at a shell prompt as root:
yum install migrationtools
This will install the scripts to the /usr/share/migrationtools/ directory. Once installed, edit the /usr/share/migrationtools/migrate_common.ph file and change the following lines to reflect the correct domain, for example:
# Default DNS domain
$DEFAULT_MAIL_DOMAIN = "example.com";

# Default base
$DEFAULT_BASE = "dc=example,dc=com";
Alternatively, you can specify the environment variables directly on the command line. For example, to run the migrate_all_online.sh script with the default base set to dc=example,dc=com, type:
export DEFAULT_BASE="dc=example,dc=com" \
/usr/share/migrationtools/migrate_all_online.sh
To decide which script to run in order to migrate the user database, refer to Tabla 15.8, “Commonly used LDAP migration scripts”.
Tabla 15.8. Commonly used LDAP migration scripts
Existing Name Service Is LDAP Running? Utilice este script
/etc flat files yes migrate_all_online.sh
/etc flat files no migrate_all_offline.sh
NetInfo yes migrate_all_netinfo_online.sh
NetInfo no migrate_all_netinfo_offline.sh
NIS (YP) yes migrate_all_nis_online.sh
NIS (YP) no migrate_all_nis_offline.sh

For more information on how to use these scripts, refer to the README and the migration-tools.txt files in the /usr/share/doc/migrationtools-version/ directory.

15.1.6. Recursos adicionales

The following resources offer additional information on the Lightweight Directory Access Protocol. Before configuring LDAP on your system, it is highly recommended that you review these resources, especially the OpenLDAP Software Administrator's Guide.

15.1.6.1. Documentación instalada

The following documentation is installed with the openldap-servers package:
/usr/share/doc/openldap-servers-version/guide.html
A copy of the OpenLDAP Software Administrator's Guide.
/usr/share/doc/openldap-servers-version/README.schema
A README file containing the description of installed schema files.
Additionally, there is also a number of manual pages that are installed with the openldap, openldap-servers, and openldap-clients packages:
Aplicaciones cliente
  • man ldapadd — Describes how to add entries to an LDAP directory.
  • man ldapdelete — Describes how to delete entries within an LDAP directory.
  • man ldapmodify — Describes how to modify entries within an LDAP directory.
  • man ldapsearch — Describes how to search for entries within an LDAP directory.
  • man ldappasswd — Describes how to set or change the password of an LDAP user.
  • man ldapcompare — Describes how to use the ldapcompare tool.
  • man ldapwhoami — Describes how to use the ldapwhoami tool.
  • man ldapmodrdn — Describes how to modify the RDNs of entries.
Aplicaciones servidor
  • man slapd — Describes command line options for the LDAP server.
Aplicaciones administrativas
  • man slapadd — Describes command line options used to add entries to a slapd database.
  • man slapcat — Describes command line options used to generate an LDIF file from a slapd database.
  • man slapindex — Describes command line options used to regenerate an index based upon the contents of a slapd database.
  • man slappasswd — Describes command line options used to generate user passwords for LDAP directories.
Archivos de configuración
  • man ldap.conf — Describes the format and options available within the configuration file for LDAP clients.
  • man slapd-config — Describes the format and options available within the configuration directory.

15.1.6.2. Sitios Web útiles

http://www.openldap.org/doc/admin24/
The current version of the OpenLDAP Software Administrator's Guide.
http://www.kingsmountain.com/ldapRoadmap.shtml
Jeff Hodges' LDAP Roadmap & FAQ containing links to several useful resources and emerging news concerning the LDAP protocol.
http://www.ldapman.org/articles/
A collection of articles that offer a good introduction to LDAP, including methods to design a directory tree and customizing directory structures.
http://www.padl.com/
A website of developers of several useful LDAP tools.

Capítulo 16. Servidores de archivos e impresoras

Este capítulo lo guiará a través de la instalación y configuración de Samba, una implementación de código abierto del protocolo Server Message Block (SMB), y de vsftpd, el servidor FTP primario que viene con Fedora. Además, le explicará como usar la Configuración de Impresión

16.1. Samba

Samba is an open source implementation of the Server Message Block (SMB) protocol. It allows the networking of Microsoft Windows®, Linux, UNIX, and other operating systems together, enabling access to Windows-based file and printer shares. Samba's use of SMB allows it to appear as a Windows server to Windows clients.

Installing the samba package

In order to use Samba, first ensure the samba package is installed on your system by running, as root:
yum install samba
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.

16.1.1. Introducción a Samba

El tercer lanzamiento principal de Samba, versión 3.0.0, introduce varias mejoras con respecto a las versiones previas, incluyendo:
  • The ability to join an Active Directory domain by means of the Lightweight Directory Access Protocol (LDAP) and Kerberos
  • Soporte incorporado de Unicode para la internacionalización
  • Support for all recent Microsoft Windows server and client versions to connect to Samba servers without needing local registry hacking
  • Two new documents developed by the Samba.org team, which include a 400+ page reference manual, and a 300+ page implementation and integration manual. For more information about these published titles, refer to Sección 16.1.12.2, “Libros relacionados”.

16.1.1.1. Características de Samba

Samba es una aplicación de servidor poderosa y versátil. Hasta los administradores bien empapados deben conocer sus habilidades y limitaciones antes de intentar una instalación y configuración.
Lo que Samba puede hacer:
  • Sirve árboles de directorios e impresoras a clientes Linux, UNIX y Windows
  • Asiste en la navegación de la red (con o sin NetBIOS)
  • Autentifica las conexiones a dominios Windows
  • Provide Windows Internet Name Service (WINS) name server resolution
  • Act as a Windows NT®-style Primary Domain Controller (PDC)
  • Act as a Backup Domain Controller (BDC) for a Samba-based PDC
  • Actúa como un miembro servidor de dominio de Active Directory
  • Join a Windows NT/2000/2003/2008 PDC
Lo que Samba no puede hacer:
  • Actúa como un BDC para un Windows PDC (y viceversa)
  • Actúa como un controlador de dominio de Active Directory

16.1.2. Demonios Samba y Servicios relacionados

Lo siguientes es una breve introducción a los demonios individuales y servicios de Samba.

16.1.2.1. Demonios Samba

Samba is comprised of three daemons (smbd, nmbd, and winbindd). Three services (smb, nmb, and winbind) control how the daemons are started, stopped, and other service-related features. These services act as different init scripts. Each daemon is listed in detail below, as well as which specific service has control over it.
smbd
The smbd server daemon provides file sharing and printing services to Windows clients. In addition, it is responsible for user authentication, resource locking, and data sharing through the SMB protocol. The default ports on which the server listens for SMB traffic are TCP ports 139 and 445.
The smbd daemon is controlled by the smb service.
nmbd
The nmbd server daemon understands and replies to NetBIOS name service requests such as those produced by SMB/Common Internet File System (CIFS) in Windows-based systems. These systems include Windows 95/98/ME, Windows NT, Windows 2000, Windows XP, and LanManager clients. It also participates in the browsing protocols that make up the Windows Network Neighborhood view. The default port that the server listens to for NMB traffic is UDP port 137.
The nmbd daemon is controlled by the nmb service.
winbindd
The winbind service resolves user and group information on a server running Windows NT, 2000, 2003 or Windows Server 2008. This makes Windows user / group information understandable by UNIX platforms. This is achieved by using Microsoft RPC calls, Pluggable Authentication Modules (PAM), and the Name Service Switch (NSS). This allows Windows NT domain users to appear and operate as UNIX users on a UNIX machine. Though bundled with the Samba distribution, the winbind service is controlled separately from the smb service.
The winbindd daemon is controlled by the winbind service and does not require the smb service to be started in order to operate. winbindd is also used when Samba is an Active Directory member, and may also be used on a Samba domain controller (to implement nested groups and/or interdomain trust). Because winbind is a client-side service used to connect to Windows NT-based servers, further discussion of winbind is beyond the scope of this chapter.

Obtaining a list of utilities that are shipped with Samba

You may refer to Sección 16.1.11, “Programas de distribución Samba” for a list of utilities included in the Samba distribution.

16.1.3. Conexión a un recurso compartido Samba

You can use Nautilus to view available Samba shares on your network. To view a list of Samba workgroups and domains on your network, select ApplicationsAccessoriesFiles from the Activities menu, and click Browse Network at the sidebar.
Browsing a network in Nautilus
Browsing a network in Nautilus
Figura 16.1. Browsing a network in Nautilus

An icon appears for each available SMB workgroup or domain on the network. Double-click one of the workgroup/domain icons to view a list of computers within the workgroup/domain.
Each machine within the workgroup is represented by its own icon. Double-click on an icon to view the Samba shares on the machine. If a username and password combination is required, you are prompted for them.
Alternately, you can also specify the Samba server and sharename in the Location: bar for Nautilus using the following syntax (replace servername and sharename with the appropriate values):
smb://servername/sharename

16.1.3.1. Línea de comandos

To query the network for Samba servers, use the findsmb command. For each server found, it displays its IP address, NetBIOS name, workgroup name, operating system, and SMB server version.
Para conectarse a un recurso compartido Samba desde el intérprete de comandos de la shell, escriba:
smbclient //hostname/sharename -U username
Replace hostname with the hostname or IP address of the Samba server you want to connect to, sharename with the name of the shared directory you want to browse, and username with the Samba username for the system. Enter the correct password or press Enter if no password is required for the user.
If you see the smb:\> prompt, you have successfully logged in. Once you are logged in, type help for a list of commands. If you wish to browse the contents of your home directory, replace sharename with your username. If the -U switch is not used, the username of the current user is passed to the Samba server.
To exit smbclient, type exit at the smb:\> prompt.

16.1.3.2. Montar el recurso compartido Samba

Algunas veces es útil montar un recurso compartido Samba a un directorio para que los archivos en el directorio puedan ser tratados como si éstos fuesen parte del sistema de archivos local.
To mount a Samba share to a directory, create a directory to mount it to (if it does not already exist), and execute the following command as root:
mount -t cifs //servername/sharename /mnt/point/ -o username=username,password=password
This command mounts sharename from servername in the local directory /mnt/point/.

Installing cifs-utils package

The mount.cifs utility is a separate RPM (independent from Samba). In order to use mount.cifs, first ensure the cifs-utils package is installed on your system by running, as root:
yum install cifs-utils
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
Note that the cifs-utils package also contains the cifs.upcall binary called by the kernel in order to perform kerberized CIFS mounts. For more information on cifs.upcall, refer to man cifs.upcall.
For more information about mounting a samba share, refer to man mount.cifs.

CIFS servers that require plain text passwords

Some CIFS servers require plain text passwords for authentication. Support for plain text password authentication can be enabled using the following command as root:
echo 0x37 > /proc/fs/cifs/SecurityFlags
WARNING: This operation can expose passwords by removing password encryption.

16.1.4. Configuración del servidor Samba

The default configuration file (/etc/samba/smb.conf) allows users to view their home directories as a Samba share. It also shares all printers configured for the system as Samba shared printers. In other words, you can attach a printer to the system and print to it from the Windows machines on your network.

16.1.4.1. Configuración gráfica

To configure Samba using a graphical interface, use one of the available Samba graphical user interfaces. A list of available GUIs can be found at http://www.samba.org/samba/GUI/.

16.1.4.2. Configuración desde la línea de comandos

Samba uses /etc/samba/smb.conf as its configuration file. If you change this configuration file, the changes do not take effect until you restart the Samba daemon with the following command, as root:
systemctl restart smb.service
To specify the Windows workgroup and a brief description of the Samba server, edit the following lines in your /etc/samba/smb.conf file:
workgroup = WORKGROUPNAME
server string = BRIEF COMMENT ABOUT SERVER
Reemplace WORKGROUPNAME con el nombre del grupo de trabajo Windows al cual debería pertenecer la máquina. El BRIEF COMMENT ABOUT SERVER es opcional y es usado como el comentario de Windows sobre el sistema Samba.
To create a Samba share directory on your Linux system, add the following section to your /etc/samba/smb.conf file (after modifying it to reflect your needs and your system):
[sharename]
comment = Insert a comment here
path = /home/share/
valid users = tfox carole
public = no
writable = yes
printable = no
create mask = 0765
The above example allows the users tfox and carole to read and write to the directory /home/share, on the Samba server, from a Samba client.

16.1.4.3. Contraseñas encriptadas

Encrypted passwords are enabled by default because it is more secure to do so. To create a user with an encrypted password, use the command smbpasswd -a username .

16.1.5. Arrancar y detener el Samba

To start a Samba server, type the following command in a shell prompt, as root:
systemctl start smb.service

Setting up a domain member server

To set up a domain member server, you must first join the domain or Active Directory using the net join command before starting the smb service.
To stop the server, type the following command in a shell prompt, as root:
systemctl stop smb.service
La opción restart es una forma fácil de detener y luego arrancar Samba. Esta es la forma más confiable de hacer que los cambios tomen lugar después de editar el archivo de configuración Samba. Observe que la opción de reinicio arranca el demonio aún si no estaba ejecutándose originalmente.
To restart the server, type the following command in a shell prompt, as root:
systemctl restart smb.service
The condrestart (conditional restart) option only starts smb on the condition that it is currently running. This option is useful for scripts, because it does not start the daemon if it is not running.

Applying the changes to the configuration

When the /etc/samba/smb.conf file is changed, Samba automatically reloads it after a few minutes. Issuing a manual restart or reload is just as effective.
To conditionally restart the server, type the following command, as root:
systemctl condrestart smb.service
A manual reload of the /etc/samba/smb.conf file can be useful in case of a failed automatic reload by the smb service. To ensure that the Samba server configuration file is reloaded without restarting the service, type the following command, as root:
systemctl reload smb.service
By default, the smb service does not start automatically at boot time. To configure Samba to start at boot time, use a service manager such as systemctl. Refer to Capítulo 8, Services and Daemons for more information regarding this tool.

16.1.6. Samba Server Types and the smb.conf File

Samba configuration is straightforward. All modifications to Samba are done in the /etc/samba/smb.conf configuration file. Although the default smb.conf file is well documented, it does not address complex topics such as LDAP, Active Directory, and the numerous domain controller implementations.
The following sections describe the different ways a Samba server can be configured. Keep in mind your needs and the changes required to the /etc/samba/smb.conf file for a successful configuration.

16.1.6.1. Servidor independiente

A stand-alone server can be a workgroup server or a member of a workgroup environment. A stand-alone server is not a domain controller and does not participate in a domain in any way. The following examples include several anonymous share-level security configurations and one user-level security configuration. For more information on share-level and user-level security modes, refer to Sección 16.1.7, “Modos de seguridad Samba”.
16.1.6.1.1. Anónimo de sólo lectura
The following /etc/samba/smb.conf file shows a sample configuration needed to implement anonymous read-only file sharing. The security = share parameter makes a share anonymous. Note, security levels for a single Samba server cannot be mixed. The security directive is a global Samba parameter located in the [global] configuration section of the /etc/samba/smb.conf file.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
[data]
comment = Documentation Samba Server
path = /export
read only = Yes
guest only = Yes
16.1.6.1.2. Anónimo Lectura/Escritura
The following /etc/samba/smb.conf file shows a sample configuration needed to implement anonymous read/write file sharing. To enable anonymous read/write file sharing, set the read only directive to no. The force user and force group directives are also added to enforce the ownership of any newly placed files specified in the share.

Do not use anonymous read/write servers

Although having an anonymous read/write server is possible, it is not recommended. Any files placed in the share space, regardless of user, are assigned the user/group combination as specified by a generic user (force user) and group (force group) in the /etc/samba/smb.conf file.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
[data]
comment = Data
path = /export
force user = docsbot
force group = users
read only = No
guest ok = Yes
16.1.6.1.3. Servidor de impresión anónimo
The following /etc/samba/smb.conf file shows a sample configuration needed to implement an anonymous print server. Setting browseable to no as shown does not list the printer in Windows Network Neighborhood. Although hidden from browsing, configuring the printer explicitly is possible. By connecting to DOCS_SRV using NetBIOS, the client can have access to the printer if the client is also part of the DOCS workgroup. It is also assumed that the client has the correct local printer driver installed, as the use client driver directive is set to Yes. In this case, the Samba server has no responsibility for sharing printer drivers to the client.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
printcap name = cups
disable spools= Yes
show add printer wizard = No
printing = cups
[printers]
comment = All Printers
path = /var/spool/samba
guest ok = Yes
printable = Yes
use client driver = Yes
browseable = Yes
16.1.6.1.4. Archivo seguro de lectura/escritura y servidor de impresión
The following /etc/samba/smb.conf file shows a sample configuration needed to implement a secure read/write print server. Setting the security directive to user forces Samba to authenticate client connections. Notice the [homes] share does not have a force user or force group directive as the [public] share does. The [homes] share uses the authenticated user details for any files created as opposed to the force user and force group in [public].
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = user
printcap name = cups
disable spools = Yes
show add printer wizard = No
printing = cups
[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No
[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes
[printers]
comment = All Printers
path = /var/spool/samba
printer admin = john, ed, @admins
create mask = 0600
guest ok = Yes
printable = Yes
use client driver = Yes
browseable = Yes

16.1.6.2. Servidor miembro de dominio

Un miembro de dominio, aunque es similar a un servidor independiente, es conectado a un controlador de dominio (bien sea Windows o Samba) y está sujeto a las reglas de seguridad del dominio. Un ejemplo de un servidor miembro de dominio podría ser un servidor departamental ejecutando Samba que tiene una cuenta de máquina en el Controlador de Dominio Primario (PDC). Todos los clientes del departamento todavía se autentifican con el PDC y se incluyen los perfiles del escritorio y todas los archivos de políticas. La diferencia es que el servidor departamental tiene la habilidad de controlar las impresoras y recursos de red compartidos.
16.1.6.2.1. Servidor miembro de dominio Active Directory
The following /etc/samba/smb.conf file shows a sample configuration needed to implement an Active Directory domain member server. In this example, Samba authenticates users for services being run locally but is also a client of the Active Directory. Ensure that your kerberos realm parameter is shown in all caps (for example realm = EXAMPLE.COM). Since Windows 2000/2003/2008 requires Kerberos for Active Directory authentication, the realm directive is required. If Active Directory and Kerberos are running on different servers, the password server directive may be required to help the distinction.
[global]
realm = EXAMPLE.COM
security = ADS
encrypt passwords = yes
# Optional. Use only if Samba cannot determine the Kerberos server automatically.
password server = kerberos.example.com
Para poder unir un servidor miembro a un dominio de Active Directory, se deben completar los pasos siguientes:
  • Configuration of the /etc/samba/smb.conf file on the member server
  • Configuration of Kerberos, including the /etc/krb5.conf file, on the member server
  • Creación de la cuenta de la máquina en el servidor de dominio Active Directory
  • Asociación del servidor miembro al dominio Active Directory
To create the machine account and join the Windows 2000/2003/2008 Active Directory, Kerberos must first be initialized for the member server wishing to join the Active Directory domain. To create an administrative Kerberos ticket, type the following command as root on the member server:
kinit administrator@EXAMPLE.COM
The kinit command is a Kerberos initialization script that references the Active Directory administrator account and Kerberos realm. Since Active Directory requires Kerberos tickets, kinit obtains and caches a Kerberos ticket-granting ticket for client/server authentication. For more information on Kerberos, the /etc/krb5.conf file, and the kinit command, refer to the Using Kerberos section of the Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards guide.
To join an Active Directory server (windows1.example.com), type the following command as root on the member server:
net ads join -S windows1.example.com -U administrator%password
Since the machine windows1 was automatically found in the corresponding Kerberos realm (the kinit command succeeded), the net command connects to the Active Directory server using its required administrator account and password. This creates the appropriate machine account on the Active Directory and grants permissions to the Samba domain member server to join the domain.

The security option

Since security = ads and not security = user is used, a local password back end such as smbpasswd is not needed. Older clients that do not support security = ads are authenticated as if security = domain had been set. This change does not affect functionality and allows local users not previously in the domain.
16.1.6.2.2. Servidor miembro de dominio basado en Windows NT4
The following /etc/samba/smb.conf file shows a sample configuration needed to implement a Windows NT4-based domain member server. Becoming a member server of an NT4-based domain is similar to connecting to an Active Directory. The main difference is NT4-based domains do not use Kerberos in their authentication method, making the /etc/samba/smb.conf file simpler. In this instance, the Samba member server functions as a pass through to the NT4-based domain server.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = domain
[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No
[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes
Having Samba as a domain member server can be useful in many situations. There are times where the Samba server can have other uses besides file and printer sharing. It may be beneficial to make Samba a domain member server in instances where Linux-only applications are required for use in the domain environment. Administrators appreciate keeping track of all machines in the domain, even if not Windows-based. In the event the Windows-based server hardware is deprecated, it is quite easy to modify the /etc/samba/smb.conf file to convert the server to a Samba-based PDC. If Windows NT-based servers are upgraded to Windows 2000/2003/2008, the /etc/samba/smb.conf file is easily modifiable to incorporate the infrastructure change to Active Directory if needed.

Make sure you join the domain before starting Samba

After configuring the /etc/samba/smb.conf file, join the domain before starting Samba by typing the following command as root:
net rpc join -U administrator%password
Note that the -S option, which specifies the domain server hostname, does not need to be stated in the net rpc join command. Samba uses the hostname specified by the workgroup directive in the /etc/samba/smb.conf file instead of it being stated explicitly.

16.1.6.3. Domain Controller

Un controlador de dominio en Windows NT es similar funcionalmente a un servidor NIS, Servicio de Información de Red (Network Information Service), en un entorno Linux. Los controladores de dominio y los servidores NIS ambos hospedan bases de datos de información sobre usuarios/grupos así como también servicios relacionados. Los controladores de dominioo son utilizados principalmente por seguridad, incluyendo la autenticación de usuarios accediendo a recursos del dominio. El servicio que mantiene la integridad de la base de datos de usuarios/grupos se llama Administrador de Cuentas de Seguridad (Security Account Manager, SAM). La base de datos SAM es almacenada de forma diferente entre sistemas Windows y sistemas Linux basados en Samba, por lo tanto la replicación SAM no se puede lograr y las plataformas no se pueden mezclar en un entorno PDC/BDC.
En un ambiente Samba, solamente pueden existir un PDC y cero o más BDCs.

A mixed Samba/Windows domain controller environment

Samba no puede existir en un ambiente controlador de dominios mixto Samba/Windows, (Samba no puede ser un BCD de un PDC de Windows o viceversa). Alternativamente, los PDCs y BDCs de Samba pueden coexistir.
16.1.6.3.1. Primary Domain Controller (PDC) using tdbsam
The simplest and most common implementation of a Samba PDC uses the new default tdbsam password database back end. Replacing the aging smbpasswd back end, tdbsam has numerous improvements that are explained in more detail in Sección 16.1.8, “Bases de datos de información de cuentas Samba”. The passdb backend directive controls which back end is to be used for the PDC.
The following /etc/samba/smb.conf file shows a sample configuration needed to implement a tdbsam password database back end.
[global]
workgroup = DOCS
netbios name = DOCS_SRV
passdb backend = tdbsam
security = user
add user script = /usr/sbin/useradd -m "%u"
delete user script = /usr/sbin/userdel -r "%u"
add group script = /usr/sbin/groupadd "%g"
delete group script = /usr/sbin/groupdel "%g"
add user to group script = /usr/sbin/usermod -G "%g" "%u"
add machine script = /usr/sbin/useradd -s /bin/false -d /dev/null  -g machines "%u"
# The following specifies the default logon script
# Per user logon scripts can be specified in the user
# account using pdbedit logon script = logon.bat
# This sets the default profile path.
# Set per user paths with pdbedit
logon drive = H:
domain logons = Yes
os level = 35
preferred master = Yes
domain master = Yes
[homes]
	comment = Home Directories
	valid users = %S
	read only = No
[netlogon]
	comment = Network Logon Service
	path = /var/lib/samba/netlogon/scripts
	browseable = No
	read only = No
# For profiles to work, create a user directory under the
# path shown.
mkdir -p /var/lib/samba/profiles/john
[Profiles]
	comment = Roaming Profile Share
	path = /var/lib/samba/profiles
	read only = No
	browseable = No
	guest ok = Yes
	profile acls = Yes
# Other resource shares ... ...
To provide a functional PDC system which uses the tdbsam follow these steps:
  1. Use a configuration of the smb.conf file as shown in the example above.
  2. Add the root user to the Samba password database:
    smbpasswd -a root
  3. Start the smb service.
  4. Make sure all profile, user, and netlogon directories are created.
  5. Add groups that users can be members of:
    groupadd -f users
    groupadd -f nobody
    groupadd -f ntadmins
  6. Associate the UNIX groups with their respective Windows groups:
    net groupmap add ntgroup="Domain Users" unixgroup=users
    net groupmap add ntgroup="Domain Guests" unixgroup=nobody
    net groupmap add ntgroup="Domain Admins" unixgroup=ntadmins
  7. Grant access rights to a user or a group. For example, to grant the right to add client machines to the domain on a Samba domain controller, to the members to the Domain Admins group, execute the following command:
    net rpc rights grant 'DOCS\Domain Admins' SetMachineAccountPrivilege -S PDC -U root
Keep in mind that Windows systems prefer to have a primary group which is mapped to a domain group such as Domain Users.
Windows groups and users use the same namespace thus not allowing the existence of a group and a user with the same name like in UNIX.

Limitations of the tdbsam authentication back end

If you need more than one domain controller or have more than 250 users, do not use a tdbsam authentication back end. LDAP is recommended in these cases.
16.1.6.3.2. Primary Domain Controller (PDC) con Active Directory
Aunque es posible para Samba ser miembro de un Active Directory, no le es posible operar como un controlador de dominio Active Directory

16.1.7. Modos de seguridad Samba

There are only two types of security modes for Samba, share-level and user-level, which are collectively known as security levels . Share-level security can only be implemented in one way, while user-level security can be implemented in one of four different ways. The different ways of implementing a security level are called security modes.

16.1.7.1. Seguridad a nivel de usuario

User-level security is the default setting for Samba. Even if the security = user directive is not listed in the /etc/samba/smb.conf file, it is used by Samba. If the server accepts the client's username/password, the client can then mount multiple shares without specifying a password for each instance. Samba can also accept session-based username/password requests. The client maintains multiple authentication contexts by using a unique UID for each logon.
In the /etc/samba/smb.conf file, the security = user directive that sets user-level security is:
[GLOBAL]
...
security = user
...
Las secciones siguientes describen otras implementaciones de seguridad a nivel de usuario.
16.1.7.1.1. Modo de seguridad de dominio (seguridad a nivel del usuario)
In domain security mode, the Samba server has a machine account (domain security trust account) and causes all authentication requests to be passed through to the domain controllers. The Samba server is made into a domain member server by using the following directives in the /etc/samba/smb.conf file:
[GLOBAL]
...
security = domain
workgroup = MARKETING
...
16.1.7.1.2. Modo de seguridad de Active Directory (seguridad a nivel de usuario)
Si tiene un entorno Active Directory, es posible unirse al dominio como un miembro nativo de Active Directory. Aún si una política de seguridad limita el uso de protocolos de autenticación compatibles con NT, el servidor Samba se puede unir al ADS utilizando Kerberos. Samba en un modo de miembro de Active Directory puede aceptar tíquets Kerberos.
In the /etc/samba/smb.conf file, the following directives make Samba an Active Directory member server:
[GLOBAL]
...
security = ADS
realm = EXAMPLE.COM
password server = kerberos.example.com
...
16.1.7.1.3. Modo de seguridad de servidor (seguridad a nivel de usuario)
Se utilizó el modo de seguridad de servidor previamente cuando Samba no fue capaz de actuar como un servidor miembro de dominio.

Avoid using the server security mode

Se recomienda que no utilice este modo puesto que existen numerosas desventajas desde el punto de vista de la seguridad.
In the /etc/samba/smb.conf, the following directives enable Samba to operate in server security mode:
[GLOBAL]
...
encrypt passwords = Yes
security = server
password server = "NetBIOS_of_Domain_Controller"
...

16.1.7.2. Share-Level Security

Con la seguridad a nivel de recurso compartido o servicio, el servidor acepta solamente una contraseña sin un nombre de usuario explícito desde el cliente. El servidor espera una contraseña para cada recurso compartido, independientemente del nombre de usuario. Han surgido informes recientes de clientes Microsoft Windows con problemas de compatibilidad con servidores de seguridad a nivel de recurso compartido. Los desarrolladores de Samba no recomiendan el uso de la seguridad a este nivel.
In the /etc/samba/smb.conf file, the security = share directive that sets share-level security is:
[GLOBAL]
...
security = share
...

16.1.8. Bases de datos de información de cuentas Samba

The latest release of Samba offers many new features including new password database back ends not previously available. Samba version 3.0.0 fully supports all databases used in previous versions of Samba. However, although supported, many back ends may not be suitable for production use.
The following is a list different back ends you can use with Samba. Other back ends not listed here may also be available.
Plain Text
Plain text back ends are nothing more than the /etc/passwd type back ends. With a plain text back end, all usernames and passwords are sent unencrypted between the client and the Samba server. This method is very unsecure and is not recommended for use by any means. It is possible that different Windows clients connecting to the Samba server with plain text passwords cannot support such an authentication method.
smbpasswd
A popular back end used in previous Samba packages, the smbpasswd back end utilizes a plain ASCII text layout that includes the MS Windows LanMan and NT account, and encrypted password information. The smbpasswd back end lacks the storage of the Windows NT/2000/2003 SAM extended controls. The smbpasswd back end is not recommended because it does not scale well or hold any Windows information, such as RIDs for NT-based groups. The tdbsam back end solves these issues for use in a smaller database (250 users), but is still not an enterprise-class solution.
ldapsam_compat
The ldapsam_compat back end allows continued OpenLDAP support for use with upgraded versions of Samba. This option is normally used when migrating to Samba 3.0.
tdbsam
The new default tdbsam password back end provides an ideal database back end for local servers, servers that do not need built-in database replication, and servers that do not require the scalability or complexity of LDAP. The tdbsam back end includes all of the smbpasswd database information as well as the previously-excluded SAM information. The inclusion of the extended SAM data allows Samba to implement the same account and system access controls as seen with Windows NT/2000/2003/2008-based systems.
The tdbsam back end is recommended for 250 users at most. Larger organizations should require Active Directory or LDAP integration due to scalability and possible network infrastructure concerns.
ldapsam
The ldapsam back end provides an optimal distributed account installation method for Samba. LDAP is optimal because of its ability to replicate its database to any number of servers such as the Red Hat Directory Server or an OpenLDAP Server. LDAP databases are light-weight and scalable, and as such are preferred by large enterprises. Installation and configuration of directory servers is beyond the scope of this chapter. For more information on the Red Hat Directory Server, refer to the Red Hat Directory Server 8.2 Deployment Guide. For more information on LDAP, refer to Sección 15.1, “OpenLDAP”.
If you are upgrading from a previous version of Samba to 3.0, note that the OpenLDAP schema file (/usr/share/doc/samba-version/LDAP/samba.schema) and the Red Hat Directory Server schema file (/usr/share/doc/samba-version/LDAP/samba-schema-FDS.ldif) have changed. These files contain the attribute syntax definitions and objectclass definitions that the ldapsam back end needs in order to function properly.
As such, if you are using the ldapsam back end for your Samba server, you will need to configure slapd to include one of these schema file. Refer to Sección 15.1.3.3, “Extending Schema” for directions on how to do this.

Make sure the openldap-server package is installed

You need to have the openldap-server package installed if you want to use the ldapsam back end.

16.1.9. Navegación de red con Samba

Network browsing enables Windows and Samba servers to appear in the Windows Network Neighborhood. Inside the Network Neighborhood, icons are represented as servers and if opened, the server's shares and printers that are available are displayed.
Network browsing capabilities require NetBIOS over TCP/IP. NetBIOS-based networking uses broadcast (UDP) messaging to accomplish browse list management. Without NetBIOS and WINS as the primary method for TCP/IP hostname resolution, other methods such as static files (/etc/hosts) or DNS, must be used.
Un explorador maestro de dominios compagina las listas de exploración desde los navegadores maestros locales en todas las subredes para que se pueda realizar la navegación entre grupos de trabajo y subredes. Preferiblemente, el explorador maestro de dominios debería ser el explorador maestro local para su propia subred.

16.1.9.1. Domain Browsing

Por defecto, un PDC servidor de Windows para un dominio es también el navegador maestro de dominio para ese dominio. No se debe configurar un servidor Samba como servidor maestro de dominio en este tipo de situación.
For subnets that do not include the Windows server PDC, a Samba server can be implemented as a local master browser. Configuring the /etc/samba/smb.conf file for a local master browser (or no browsing at all) in a domain controller environment is the same as workgroup configuration.

16.1.9.2. WINS (Windows Internet Name Server)

Un servidor Samba o un servidor Windows NT pueden funcionar como servidor WINS. Cuando se utiliza un servidor WINS con NetBIOS activado, se pueden enrutar los unicasts UDP lo que permite la resolución de nombres a través de la red. Sin un servidor WINS, la difusión UDP está limitada a la subred local y por lo tanto no tiene que ser enrutada a otras subredes, grupos de trabajo o dominios. Si se necesita la replicación WINS, no utilice Samba como su servidor WINS primario pues actualmente Samba no soporta la replicación WINS.
In a mixed NT/2000/2003/2008 server and Samba environment, it is recommended that you use the Microsoft WINS capabilities. In a Samba-only environment, it is recommended that you use only one Samba server for WINS.
The following is an example of the /etc/samba/smb.conf file in which the Samba server is serving as a WINS server:
[global]
wins support = Yes

Using WINS

Todos los servidores (incluyendo Samba) deberían conectarse a un servidor WINS para resolver los nombres NetBIOS. Sin WINS, la navegación solamente ocurre en la subred local. Más aún, si se obtiene una lista global al dominio, los hosts no se pueden resolver para el cliente sin WINS.

16.1.10. Samba con soporte para la impresión con CUPS

Samba allows client machines to share printers connected to the Samba server. In addition, Samba also allows client machines to send documents built in Linux to Windows printer shares. Although there are other printing systems that function with Fedora, CUPS (Common UNIX Print System) is the recommended printing system due to its close integration with Samba.

16.1.10.1. Simple smb.conf Settings

The following example shows a very basic /etc/samba/smb.conf configuration for CUPS support:
[global]
load printers = Yes
printing = cups
printcap name = cups
[printers]
comment = All Printers
path = /var/spool/samba
browseable = No
public = Yes
guest ok = Yes
writable = No
printable = Yes
printer admin = @ntadmins
[print$]
comment = Printer Drivers Share
path = /var/lib/samba/drivers
write list = ed, john
printer admin = ed, john
Se pueden establecer otras configuraciones de impresora. Para añadir seguridad adicional y privacidad para la impresión de documentos confidenciales, los usuarios pueden tener su propio espacio de impresión que no esté en una ruta pública. Si el trabajo falla, otros usuarios no tendrán acceso al archivo.
The print$ directive contains printer drivers for clients to access if not available locally. The print$ directive is optional and may not be required depending on the organization.
Setting browseable to Yes enables the printer to be viewed in the Windows Network Neighborhood, provided the Samba server is set up correctly in the domain/workgroup.

16.1.11. Programas de distribución Samba

findsmb

findsmb subnet_broadcast_address
The findsmb program is a Perl script which reports information about SMB-aware systems on a specific subnet. If no subnet is specified the local subnet is used. Items displayed include IP address, NetBIOS name, workgroup or domain name, operating system, and version.
The following example shows the output of executing findsmb as any valid user on a system:
~]$ findsmb
IP ADDR       NETBIOS NAME  WORKGROUP/OS/VERSION
------------------------------------------------------------------
10.1.59.25    VERVE         [MYGROUP] [Unix] [Samba 3.0.0-15]
10.1.59.26    STATION22     [MYGROUP] [Unix] [Samba 3.0.2-7.FC1]
10.1.56.45    TREK         +[WORKGROUP] [Windows 5.0] [Windows 2000 LAN Manager]
10.1.57.94    PIXEL         [MYGROUP] [Unix] [Samba 3.0.0-15]
10.1.57.137   MOBILE001     [WORKGROUP] [Windows 5.0] [Windows 2000 LAN Manager]
10.1.57.141   JAWS         +[KWIKIMART] [Unix] [Samba 2.2.7a-security-rollup-fix]
10.1.56.159   FRED         +[MYGROUP] [Unix] [Samba 3.0.0-14.3E]
10.1.59.192   LEGION       *[MYGROUP] [Unix] [Samba 2.2.7-security-rollup-fix]
10.1.56.205   NANCYN       +[MYGROUP] [Unix] [Samba 2.2.7a-security-rollup-fix]

net

net protocol function misc_options target_options
The net utility is similar to the net utility used for Windows and MS-DOS. The first argument is used to specify the protocol to use when executing a command. The protocol option can be ads, rap, or rpc for specifying the type of server connection. Active Directory uses ads, Win9x/NT3 uses rap, and Windows NT4/2000/2003/2008 uses rpc. If the protocol is omitted, net automatically tries to determine it.
The following example displays a list the available shares for a host named wakko:
~]$ net -l share -S wakko
Password:
Enumerating shared resources (exports) on remote server:
Share name   Type     Description
----------   ----     -----------
data         Disk     Wakko data share
tmp          Disk     Wakko tmp share
IPC$         IPC      IPC Service (Samba Server)
ADMIN$       IPC      IPC Service (Samba Server)
The following example displays a list of Samba users for a host named wakko:
~]$ net -l user -S wakko
root password:
User name             Comment
-----------------------------
andriusb              Documentation
joe                   Marketing
lisa                  Sales

nmblookup

nmblookup options netbios_name
The nmblookup program resolves NetBIOS names into IP addresses. The program broadcasts its query on the local subnet until the target machine replies.
He aquí un ejemplo:
~]$ nmblookup trek
querying trek on 10.1.59.255
10.1.56.45 trek<00>

pdbedit

pdbedit options
The pdbedit program manages accounts located in the SAM database. All back ends are supported including smbpasswd, LDAP, and the tdb database library.
Los siguientes son ejemplos para añadir, eliminar y listar usuarios:
~]$ pdbedit -a kristin
new password:
retype new password:
Unix username:        kristin
NT username:
Account Flags:        [U          ]
User SID:             S-1-5-21-1210235352-3804200048-1474496110-2012
Primary Group SID:    S-1-5-21-1210235352-3804200048-1474496110-2077
Full Name: Home Directory:       \\wakko\kristin
HomeDir Drive:
Logon Script:
Profile Path:         \\wakko\kristin\profile
Domain:               WAKKO
Account desc:
Workstations: Munged
dial:
Logon time:           0
Logoff time:          Mon, 18 Jan 2038 22:14:07 GMT
Kickoff time:         Mon, 18 Jan 2038 22:14:07 GMT
Password last set:    Thu, 29 Jan 2004 08:29:28
GMT Password can change:  Thu, 29 Jan 2004 08:29:28 GMT
Password must change: Mon, 18 Jan 2038 22:14:07 GMT
~]$ pdbedit -v -L kristin
Unix username:        kristin
NT username:
Account Flags:        [U          ]
User SID:             S-1-5-21-1210235352-3804200048-1474496110-2012
Primary Group SID:    S-1-5-21-1210235352-3804200048-1474496110-2077
Full Name:
Home Directory:       \\wakko\kristin
HomeDir Drive:
Logon Script:
Profile Path:         \\wakko\kristin\profile
Domain:               WAKKO
Account desc:
Workstations: Munged
dial:
Logon time:           0
Logoff time:          Mon, 18 Jan 2038 22:14:07 GMT
Kickoff time:         Mon, 18 Jan 2038 22:14:07 GMT
Password last set:    Thu, 29 Jan 2004 08:29:28 GMT
Password can change:  Thu, 29 Jan 2004 08:29:28 GMT
Password must change: Mon, 18 Jan 2038 22:14:07 GMT
~]$ pdbedit -L
andriusb:505:
joe:503:
lisa:504:
kristin:506:
~]$ pdbedit -x joe
~]$ pdbedit -L
andriusb:505: lisa:504: kristin:506:

rpcclient

rpcclient server options
The rpcclient program issues administrative commands using Microsoft RPCs, which provide access to the Windows administration graphical user interfaces (GUIs) for systems management. This is most often used by advanced users that understand the full complexity of Microsoft RPCs.

smbcacls

smbcacls //server/share filename options
The smbcacls program modifies Windows ACLs on files and directories shared by a Samba server or a Windows server.

smbclient

smbclient //server/share password options
The smbclient program is a versatile UNIX client which provides functionality similar to ftp.

smbcontrol

smbcontrol -i options
smbcontrol options destination messagetype parameters
The smbcontrol program sends control messages to running smbd, nmbd, or winbindd daemons. Executing smbcontrol -i runs commands interactively until a blank line or a 'q' is entered.

smbpasswd

smbpasswd options username password
The smbpasswd program manages encrypted passwords. This program can be run by a superuser to change any user's password as well as by an ordinary user to change their own Samba password.

smbspool

smbspool job user title copies options filename
The smbspool program is a CUPS-compatible printing interface to Samba. Although designed for use with CUPS printers, smbspool can work with non-CUPS printers as well.

smbstatus

smbstatus options
The smbstatus program displays the status of current connections to a Samba server.

smbtar

smbtar options
The smbtar program performs backup and restores of Windows-based share files and directories to a local tape archive. Though similar to the tar command, the two are not compatible.

testparm

testparm options filename hostname IP_address
The testparm program checks the syntax of the /etc/samba/smb.conf file. If your /etc/samba/smb.conf file is in the default location (/etc/samba/smb.conf) you do not need to specify the location. Specifying the hostname and IP address to the testparm program verifies that the hosts.allow and host.deny files are configured correctly. The testparm program also displays a summary of your /etc/samba/smb.conf file and the server's role (stand-alone, domain, etc.) after testing. This is convenient when debugging as it excludes comments and concisely presents information for experienced administrators to read.
Por ejemplo:
~]$ testparm
Load smb config files from /etc/samba/smb.conf
Processing section "[homes]"
Processing section "[printers]"
Processing section "[tmp]"
Processing section "[html]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions
<enter>
# Global parameters
[global]
	workgroup = MYGROUP
	server string = Samba Server
	security = SHARE
	log file = /var/log/samba/%m.log
	max log size = 50
	socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
	dns proxy = No
[homes]
	comment = Home Directories
	read only = No
	browseable = No
[printers]
	comment = All Printers
	path = /var/spool/samba
	printable = Yes
	browseable = No
[tmp]
	comment = Wakko tmp
	path = /tmp
	guest only = Yes
[html]
	comment = Wakko www
	path = /var/www/html
	force user = andriusb
	force group = users
	read only = No
	guest only = Yes

wbinfo

wbinfo options
The wbinfo program displays information from the winbindd daemon. The winbindd daemon must be running for wbinfo to work.

16.1.12. Recursos adicionales

Las secciones siguientes proporcionan formas de explorar Samba en más detalles.

16.1.12.1. Documentación instalada

  • /usr/share/doc/samba-version-number/ — All additional files included with the Samba distribution. This includes all helper scripts, sample configuration files, and documentation. This directory also contains online versions of The Official Samba-3 HOWTO-Collection and Samba-3 by Example, both of which are cited below.

    Make sure you have the samba-doc package installed

    In order to use the Samba documentation, first ensure the samba-doc package is installed on your system by running, as root:
    yum install samba-doc
    For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
Refer to the following manual pages for detailed information specific Samba features:
  • smb.conf
  • samba
  • smbd
  • nmbd
  • winbind

16.1.12.2. Libros relacionados

  • The Official Samba-3 HOWTO-Collection by John H. Terpstra and Jelmer R. Vernooij; Prentice Hall — The official Samba-3 documentation as issued by the Samba development team. This is more of a reference guide than a step-by-step guide.
  • Samba-3 by Example by John H. Terpstra; Prentice Hall — This is another official release issued by the Samba development team which discusses detailed examples of OpenLDAP, DNS, DHCP, and printing configuration files. This has step-by-step related information that helps in real-world implementations.
  • Using Samba, 2nd Edition by Jay T's, Robert Eckstein, and David Collier-Brown; O'Reilly — A good resource for novice to advanced users, which includes comprehensive reference material.

16.1.12.3. Sitios Web útiles

  • http://www.samba.org/ — Homepage for the Samba distribution and all official documentation created by the Samba development team. Many resources are available in HTML and PDF formats, while others are only available for purchase. Although many of these links are not Fedora specific, some concepts may apply.
  • http://samba.org/samba/archives.html — Active email lists for the Samba community. Enabling digest mode is recommended due to high levels of list activity.
  • Samba newsgroups — Samba threaded newsgroups, such as gmane.org, that use the NNTP protocol are also available. This an alternative to receiving mailing list emails.

16.2. FTP

Protocolo de Transferencia de Archivo (FTP) es uno de los mas antiguos y mas usado de los protocolos encontrados en internet en la actualidad. Su proposito es la tranferencia segura de archivos entre computadoras en una red sin el requerimiento de que el usuario tenga acceso directo en una computadora remota o que tenga el conocimiento de como usar un sistema remoto. El le permite al usuario accesar archivos en sistemas remotos usando un conjunto estandarizado de comandos.
This section outlines the basics of the FTP protocol, as well as configuration options for the primary FTP server shipped with Fedora, vsftpd.

16.2.1. El Protocolo de Transferencia de Archivo

Sin, embargo FTP es prevalente en el internet, el es a menudo requerido para compartir archivos al publico. Administradores de sistemas, por lo tanto, deberia ser conscientes de las características únicas del protocolo

16.2.1.1. Puertos múltiples, modos múltiples

A diferencia de la mayoria de los protocolos usados en internet,FTP requiere multiples puertos para trabajar apropiadamente. Cuando una FTP aplicación cliente inicia una conexión a un FTP servidor, el abre el puerto 21 en el servidor - conocido como el puerto de comandos.Este puerto es usado para emitir todos los comandos a el servidor. Cualquier dato pedido desde el servidor es retornado a el cliente por un puerto de datos. El número para las conexiones de datos, y el modo en que las conexiones de datos son inicializadas, varian dependiendo si el cliente pide los datos en modo activo o pasivo.
A continuación se describen estos modos:
modo activo
El modo activo es el método original usado por el protocolo FTP para la transferencia de datos a la aplicación cliente. Cuando un modo activo de transferencia de datos es iniciada por el cliente FTP, el servidor abre una conexión desde el puerto 20 en el servidor a la dirección IP y a un puerto aleatorio y sin privilegios (mayor que 1024 ) especificado por el cliente. Este convenio dice que la maquina cliente debe ser le permitido aceptar conexiones sobre cualquier puerto superior a 1024. Con el crecimiento de redes inseguras, como el internet, el uso de corta fuegos para proteger las maquinas clientes es ahora prevalente. Porque estos clientes de corta fuegos a menudo niegan las conexiones que vienen de un servidor en un modo activo FTP. modo pasivo fue concebido.
modo pasivo
Modo pasivo. como modo activo, es iniciado por cliente FTP. Cuando piden datos del servidor, el cliente FTP indica que quiere acceso a los datos en modo pasivo y el servidor provee la dirección IP un puerto aleatorio y sin privilegios (mayor que 1024) en el servidor. El cliente entonces se conecta a eso puerto en el servidor para descargar la información pedida.
While passive mode resolves issues for client-side firewall interference with data connections, it can complicate administration of the server-side firewall. You can reduce the number of open ports on a server by limiting the range of unprivileged ports on the FTP server. This also simplifies the process of configuring firewall rules for the server. Refer to Sección 16.2.5.8, “Opciones de red” for more information about limiting passive ports.

16.2.2. Servidores FTP

Fedora se distribuye con dos servidores FTP:
  • Red Hat Content Accelerator — Un servidor Web basado en el kernel que produce un servidor Web y servicios FTP de alto rendimiento. Debido a que la velocidad es el promer objetivo en su diseño, tiene una funcionalidad limitada y funciona solo como un servidor FTP en modo anónimo. Para más información sobre como configurar y administrar Red Hat Content Accelerator, consulte la documentación disponible en http://www.redhat.com/docs/manuals/tux/.
  • vsftpd — A fast, secure FTP daemon which is the preferred FTP server for Fedora. The remainder of this section focuses on vsftpd.

16.2.2.1. vsftpd

The Very Secure FTP Daemon (vsftpd) is designed from the ground up to be fast, stable, and, most importantly, secure. vsftpd is the only stand-alone FTP server distributed with Fedora, due to its ability to handle large numbers of connections efficiently and securely.
El modelo de seguridad usado por vsftpd posee tres aspectos primarios:
  • Strong separation of privileged and non-privileged processes — Separate processes handle different tasks, and each of these processes run with the minimal privileges required for the task.
  • Tasks requiring elevated privileges are handled by processes with the minimal privilege necessary — By leveraging compatibilities found in the libcap library, tasks that usually require full root privileges can be executed more safely from a less privileged process.
  • Most processes run in a chroot jail — Whenever possible, processes are change-rooted to the directory being shared; this directory is then considered a chroot jail. For example, if the directory /var/ftp/ is the primary shared directory, vsftpd reassigns /var/ftp/ to the new root directory, known as /. This disallows any potential malicious hacker activities for any directories not contained below the new root directory.
El uso de esas prácticas tienen los siguientes efectos en como vsftpd maneja los requerimientos:
  • The parent process runs with the least privileges required — The parent process dynamically calculates the level of privileges it requires to minimize the level of risk. Child processes handle direct interaction with the FTP clients and run with as close to no privileges as possible.
  • All operations requiring elevated privileges are handled by a small parent process — Much like the Apache HTTP Server, vsftpd launches unprivileged child processes to handle incoming connections. This allows the privileged, parent process to be as small as possible and handle relatively few tasks.
  • All requests from unprivileged child processes are distrusted by the parent process — Communication with child processes are received over a socket, and the validity of any information from child processes is checked before being acted on.
  • Most interaction with FTP clients is handled by unprivileged child processes in a chroot jail — Because these child processes are unprivileged and only have access to the directory being shared, any crashed processes only allows the attacker access to the shared files.

16.2.3. Archivos instalados con vsftpd

The vsftpd RPM installs the daemon (/usr/sbin/vsftpd), its configuration and related files, as well as FTP directories onto the system. The following lists the files and directories related to vsftpd configuration:
  • /etc/rc.d/init.d/vsftpd — The initialization script (initscript) used by the systemctl command to start, stop, or reload vsftpd. Refer to Sección 16.2.4, “Iniciar y Detener vsftpd for more information about using this script.
  • /etc/pam.d/vsftpd — The Pluggable Authentication Modules (PAM) configuration file for vsftpd. This file specifies the requirements a user must meet to login to the FTP server. For more information on PAM, refer to the Using Pluggable Authentication Modules (PAM) chapter of the Fedora 17 Managing Single Sign-On and Smart Cards guide.
  • /etc/vsftpd/vsftpd.conf — The configuration file for vsftpd. Refer to Sección 16.2.5, “vsftpd Opciones de configuracion ” for a list of important options contained within this file.
  • /etc/vsftpd/ftpusers — A list of users not allowed to log into vsftpd. By default, this list includes the root, bin, and daemon users, among others.
  • /etc/vsftpd/user_list — This file can be configured to either deny or allow access to the users listed, depending on whether the userlist_deny directive is set to YES (default) or NO in /etc/vsftpd/vsftpd.conf. If /etc/vsftpd/user_list is used to grant access to users, the usernames listed must not appear in /etc/vsftpd/ftpusers.
  • /var/ftp/ — The directory containing files served by vsftpd. It also contains the /var/ftp/pub/ directory for anonymous users. Both directories are world-readable, but writable only by the root user.

16.2.4. Iniciar y Detener vsftpd

The vsftpd RPM installs the /etc/rc.d/init.d/vsftpd script, which can be accessed using the systemctl command.
To start the server, as root type:
systemctl start vsftpd.service
To stop the server, as root type:
systemctl stop vsftpd.service
The restart option is a shorthand way of stopping and then starting vsftpd. This is the most efficient way to make configuration changes take effect after editing the configuration file for vsftpd.
To restart the server, as root type:
systemctl restart vsftpd.service
The condrestart (conditional restart) option only starts vsftpd if it is currently running. This option is useful for scripts, because it does not start the daemon if it is not running.
To conditionally restart the server, as root type:
systemctl condrestart vsftpd.service
By default, the vsftpd service does not start automatically at boot time. To configure the vsftpd service to start at boot time, use a service manager such as systemctl. Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

16.2.4.1. Iniciando múltiples copias de vfstpd

Sometimes one computer is used to serve multiple FTP domains. This is a technique called multihoming. One way to multihome using vsftpd is by running multiple copies of the daemon, each with its own configuration file.
To do this, first assign all relevant IP addresses to network devices or alias network devices on the system. Additional information about network configuration scripts can be found in Capítulo 7, Interfaces de red.
Next, the DNS server for the FTP domains must be configured to reference the correct machine. For information about BIND and its configuration files, refer to Sección 12.2, “BIND”.
If there is more configuration files present in the /etc/vsftpd directory, calling systemctl start vsftpd.service results in the /etc/rc.d/init.d/vsftpd initscript starting the same number of processes as the number of configuration files. Each configuration file must have a unique name in the /etc/vsftpd/ directory and must be readable and writable only by root.

16.2.5. vsftpd Opciones de configuracion

Although vsftpd may not offer the level of customization other widely available FTP servers have, it offers enough options to fill most administrator's needs. The fact that it is not overly feature-laden limits configuration and programmatic errors.
All configuration of vsftpd is handled by its configuration file, /etc/vsftpd/vsftpd.conf. Each directive is on its own line within the file and follows the following format:
directive=value
For each directive, replace directive with a valid directive and value with a valid value.

Do not use spaces

There must not be any spaces between the directive, equal symbol, and the value in a directive.
Las líneas comentadas deben estar antecedidas por el signo numeral (#) y son ignoradas por el demonio.
For a complete list of all directives available, refer to the man page for vsftpd.conf.

Securing the vsftpd service

For an overview of ways to secure vsftpd, refer to the Fedora 17 Security Guide.
The following is a list of some of the more important directives within /etc/vsftpd/vsftpd.conf. All directives not explicitly found or commented out within vsftpd's configuration file are set to their default value.

16.2.5.1. Opciones de demonios

The following is a list of directives which control the overall behavior of the vsftpd daemon.
  • listen — When enabled, vsftpd runs in stand-alone mode. Fedora sets this value to YES. This directive cannot be used in conjunction with the listen_ipv6 directive.
    El valor por defecto es NO.
  • listen_ipv6 — When enabled, vsftpd runs in stand-alone mode, but listens only to IPv6 sockets. This directive cannot be used in conjunction with the listen directive.
    El valor por defecto es NO.
  • session_support — When enabled, vsftpd attempts to maintain login sessions for each user through Pluggable Authentication Modules (PAM). For more information, refer to the Using Pluggable Authentication Modules (PAM) chapter of the Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart Cards and the PAM man pages. . If session logging is not necessary, disabling this option allows vsftpd to run with less processes and lower privileges.
    El valor por defecto es Si.

16.2.5.2. Opciones de conexión y control de acceso

La siguiente es una lista de las directrices que controlan el comportamiento de los inicios de sesión y los mecanismos de control de acceso.
  • anonymous_enable — When enabled, anonymous users are allowed to log in. The usernames anonymous and ftp are accepted.
    El valor por defecto es Si.
    Refer to Sección 16.2.5.3, “Opciones de usuario anónimo” for a list of directives affecting anonymous users.
  • banned_email_file — If the deny_email_enable directive is set to YES, this directive specifies the file containing a list of anonymous email passwords which are not permitted access to the server.
    The default value is /etc/vsftpd/banned_emails.
  • banner_file — Specifies the file containing text displayed when a connection is established to the server. This option overrides any text specified in the ftpd_banner directive.
    Esta directriz no tiene un valor predeterminado.
  • cmds_allowed — Specifies a comma-delimited list of FTP commands allowed by the server. All other commands are rejected.
    Esta directriz no tiene un valor predeterminado.
  • deny_email_enable — When enabled, any anonymous user utilizing email passwords specified in the /etc/vsftpd/banned_emails are denied access to the server. The name of the file referenced by this directive can be specified using the banned_email_file directive.
    El valor por defecto es NO.
  • ftpd_banner — When enabled, the string specified within this directive is displayed when a connection is established to the server. This option can be overridden by the banner_file directive.
    By default vsftpd displays its standard banner.
  • local_enable — When enabled, local users are allowed to log into the system.
    El valor por defecto es Si.
    Refer to Sección 16.2.5.4, “Opciones del usuario local” for a list of directives affecting local users.
  • pam_service_name — Specifies the PAM service name for vsftpd.
    The default value is ftp. Note, in Fedora, the value is set to vsftpd.
  • The default value is NO. Note, in Fedora, the value is set to YES.
  • userlist_deny — When used in conjunction with the userlist_enable directive and set to NO, all local users are denied access unless the username is listed in the file specified by the userlist_file directive. Because access is denied before the client is asked for a password, setting this directive to NO prevents local users from submitting unencrypted passwords over the network.
    El valor por defecto es Si.
  • userlist_enable — When enabled, the users listed in the file specified by the userlist_file directive are denied access. Because access is denied before the client is asked for a password, users are prevented from submitting unencrypted passwords over the network.
    The default value is NO, however under Fedora the value is set to YES.
  • userlist_file — Specifies the file referenced by vsftpd when the userlist_enable directive is enabled.
    El valor por defecto /etc/vsftpd/user_list y es creado durante la instalación

16.2.5.3. Opciones de usuario anónimo

The following lists directives which control anonymous user access to the server. To use these options, the anonymous_enable directive must be set to YES.
  • anon_mkdir_write_enable — When enabled in conjunction with the write_enable directive, anonymous users are allowed to create new directories within a parent directory which has write permissions.
    El valor por defecto es NO.
  • anon_root — Specifies the directory vsftpd changes to after an anonymous user logs in.
    Esta directriz no tiene un valor predeterminado.
  • anon_upload_enable — When enabled in conjunction with the write_enable directive, anonymous users are allowed to upload files within a parent directory which has write permissions.
    El valor por defecto es NO.
  • anon_world_readable_only — When enabled, anonymous users are only allowed to download world-readable files.
    El valor por defecto es Si.
  • ftp_username — Specifies the local user account (listed in /etc/passwd) used for the anonymous FTP user. The home directory specified in /etc/passwd for the user is the root directory of the anonymous FTP user.
    El valor por defecto es ftp.
  • no_anon_password — When enabled, the anonymous user is not asked for a password.
    El valor por defecto es NO.
  • secure_email_list_enable — When enabled, only a specified list of email passwords for anonymous logins are accepted. This is a convenient way to offer limited security to public content without the need for virtual users.
    Anonymous logins are prevented unless the password provided is listed in /etc/vsftpd/email_passwords. The file format is one password per line, with no trailing white spaces.
    El valor por defecto es NO.

16.2.5.4. Opciones del usuario local

The following lists directives which characterize the way local users access the server. To use these options, the local_enable directive must be set to YES.
  • chmod_enable — When enabled, the FTP command SITE CHMOD is allowed for local users. This command allows the users to change the permissions on files.
    El valor por defecto es Si.
  • chroot_list_enable — When enabled, the local users listed in the file specified in the chroot_list_file directive are placed in a chroot jail upon log in.
    If enabled in conjunction with the chroot_local_user directive, the local users listed in the file specified in the chroot_list_file directive are not placed in a chroot jail upon log in.
    El valor por defecto es NO.
  • chroot_list_file — Specifies the file containing a list of local users referenced when the chroot_list_enable directive is set to YES.
    El valor por defecto es /etc/vsftpd/chroot_list.
  • chroot_local_user — When enabled, local users are change-rooted to their home directories after logging in.
    El valor por defecto es NO.

    Avoid enabling the chroot_local_user option

    Enabling chroot_local_user opens up a number of security issues, especially for users with upload privileges. For this reason, it is not recommended.
  • guest_enable — When enabled, all non-anonymous users are logged in as the user guest, which is the local user specified in the guest_username directive.
    El valor por defecto es NO.
  • guest_username — Specifies the username the guest user is mapped to.
    El valor por defecto es ftp.
  • local_root — Specifies the directory vsftpd changes to after a local user logs in.
    Esta directriz no tiene un valor predeterminado.
  • local_umask — Specifies the umask value for file creation. Note that the default value is in octal form (a numerical system with a base of eight), which includes a "0" prefix. Otherwise the value is treated as a base-10 integer.
    El valor por defecto is 022.
  • passwd_chroot_enable — When enabled in conjunction with the chroot_local_user directive, vsftpd change-roots local users based on the occurrence of the /./ in the home directory field within /etc/passwd.
    El valor por defecto es NO.
  • user_config_dir — Specifies the path to a directory containing configuration files bearing the name of local system users that contain specific setting for that user. Any directive in the user's configuration file overrides those found in /etc/vsftpd/vsftpd.conf.
    Esta directriz no tiene un valor predeterminado.

16.2.5.5. Opciones de directorio

La siguiente es una lista de directrices que afectan a los directorios.
  • dirlist_enable — When enabled, users are allowed to view directory lists.
    El valor por defecto es Si.
  • dirmessage_enable — When enabled, a message is displayed whenever a user enters a directory with a message file. This message resides within the current directory. The name of this file is specified in the message_file directive and is .message by default.
    The default value is NO. Note, in Fedora, the value is set to YES.
  • force_dot_files — When enabled, files beginning with a dot (.) are listed in directory listings, with the exception of the . and .. files.
    El valor por defecto es NO.
  • hide_ids — When enabled, all directory listings show ftp as the user and group for each file.
    El valor por defecto es NO.
  • message_file — Specifies the name of the message file when using the dirmessage_enable directive.
    El valor por defecto es .message.
  • text_userdb_names — When enabled, text usernames and group names are used in place of UID and GID entries. Enabling this option may slow performance of the server.
    El valor por defecto es NO.
  • use_localtime — When enabled, directory listings reveal the local time for the computer instead of GMT.
    El valor por defecto es NO.

16.2.5.6. Opciones de transferencia de archivos

La siguiente es una lista de directrices que afectan a los directorios.
  • download_enable — When enabled, file downloads are permitted.
    El valor por defecto es Si.
  • chown_uploads — When enabled, all files uploaded by anonymous users are owned by the user specified in the chown_username directive.
    El valor por defecto es NO.
  • chown_username — Specifies the ownership of anonymously uploaded files if the chown_uploads directive is enabled.
    El valor por defecto es root.
  • write_enable — When enabled, FTP commands which can change the file system are allowed, such as DELE, RNFR, and STOR.
    El valor por defecto es Si.

16.2.5.7. Opciones de conexión

The following lists directives which affect vsftpd's logging behavior.
  • dual_log_enable — When enabled in conjunction with xferlog_enable, vsftpd writes two files simultaneously: a wu-ftpd-compatible log to the file specified in the xferlog_file directive (/var/log/xferlog by default) and a standard vsftpd log file specified in the vsftpd_log_file directive (/var/log/vsftpd.log by default).
    El valor por defecto es NO.
  • log_ftp_protocol — When enabled in conjunction with xferlog_enable and with xferlog_std_format set to NO, all FTP commands and responses are logged. This directive is useful for debugging.
    El valor por defecto es NO.
  • syslog_enable — When enabled in conjunction with xferlog_enable, all logging normally written to the standard vsftpd log file specified in the vsftpd_log_file directive (/var/log/vsftpd.log by default) is sent to the system logger instead under the FTPD facility.
    El valor por defecto es NO.
  • vsftpd_log_file — Specifies the vsftpd log file. For this file to be used, xferlog_enable must be enabled and xferlog_std_format must either be set to NO or, if xferlog_std_format is set to YES, dual_log_enable must be enabled. It is important to note that if syslog_enable is set to YES, the system log is used instead of the file specified in this directive.
    el valor por defecto es /var/log/vsftpd.log.
  • xferlog_enable — When enabled, vsftpd logs connections (vsftpd format only) and file transfer information to the log file specified in the vsftpd_log_file directive (/var/log/vsftpd.log by default). If xferlog_std_format is set to YES, file transfer information is logged but connections are not, and the log file specified in xferlog_file (/var/log/xferlog by default) is used instead. It is important to note that both log files and log formats are used if dual_log_enable is set to YES.
    The default value is NO. Note, in Fedora, the value is set to YES.
  • xferlog_file — Specifies the wu-ftpd-compatible log file. For this file to be used, xferlog_enable must be enabled and xferlog_std_format must be set to YES. It is also used if dual_log_enable is set to YES.
    El valor por defecto es /var/log/xferlog.
  • xferlog_std_format — When enabled in conjunction with xferlog_enable, only a wu-ftpd-compatible file transfer log is written to the file specified in the xferlog_file directive (/var/log/xferlog by default). It is important to note that this file only logs file transfers and does not log connections to the server.
    The default value is NO. Note, in Fedora, the value is set to YES.

Maintaining compatibility with older log file formats

To maintain compatibility with log files written by the older wu-ftpd FTP server, the xferlog_std_format directive is set to YES under Fedora. However, this setting means that connections to the server are not logged.
To both log connections in vsftpd format and maintain a wu-ftpd-compatible file transfer log, set dual_log_enable to YES.
If maintaining a wu-ftpd-compatible file transfer log is not important, either set xferlog_std_format to NO, comment the line with a hash sign (#), or delete the line entirely.

16.2.5.8. Opciones de red

The following lists directives which affect how vsftpd interacts with the network.
  • accept_timeout — Especifica el tiempo para que un cliente en modo pasivo establezca una conexión.
    El valor por defecto es 60.
  • anon_max_rate — Specifies the maximum data transfer rate for anonymous users in bytes per second.
    El valor por defecto es 0, el cual no limita la tasa de transferencia.
  • connect_from_port_20 When enabled, vsftpd runs with enough privileges to open port 20 on the server during active mode data transfers. Disabling this option allows vsftpd to run with less privileges, but may be incompatible with some FTP clients.
    The default value is NO. Note, in Fedora, the value is set to YES.
  • connect_timeout — Especifica el tiempo máximo que posee un cliente en modo activo para responder a una conexión de datos, en segundo
    El valor por defecto es 60.
  • data_connection_timeout — Specifies maximum amount of time data transfers are allowed to stall, in seconds. Once triggered, the connection to the remote client is closed.
    El valor por defecto es 300.
  • ftp_data_port — Specifies the port used for active data connections when connect_from_port_20 is set to YES.
    El valor por defecto es 20.
  • idle_session_timeout — Specifies the maximum amount of time between commands from a remote client. Once triggered, the connection to the remote client is closed.
    El valor por defecto es 300.
  • listen_address — Specifies the IP address on which vsftpd listens for network connections.
    Esta directriz no tiene un valor predeterminado.

    Running multiple copies of vsftpd

    If running multiple copies of vsftpd serving different IP addresses, the configuration file for each copy of the vsftpd daemon must have a different value for this directive. Refer to Sección 16.2.4.1, “Iniciando múltiples copias de vfstpd for more information about multihomed FTP servers.
  • listen_address6 — Specifies the IPv6 address on which vsftpd listens for network connections when listen_ipv6 is set to YES.
    Esta directriz no tiene un valor predeterminado.

    Running multiple copies of vsftpd

    If running multiple copies of vsftpd serving different IP addresses, the configuration file for each copy of the vsftpd daemon must have a different value for this directive. Refer to Sección 16.2.4.1, “Iniciando múltiples copias de vfstpd for more information about multihomed FTP servers.
  • listen_port — Specifies the port on which vsftpd listens for network connections.
    The default value is 21.
  • local_max_rate — Specifies the maximum rate data is transferred for local users logged into the server in bytes per second.
    El valor por defecto es 0, el cual no limita la tasa de transferencia.
  • max_clients — Specifies the maximum number of simultaneous clients allowed to connect to the server when it is running in standalone mode. Any additional client connections would result in an error message.
    The default value is 0, which does not limit connections.
  • max_per_ip — Specifies the maximum of clients allowed to connected from the same source IP address.
    The default value is 0, which does not limit connections.
  • pasv_address — Specifies the IP address for the public facing IP address of the server for servers behind Network Address Translation (NAT) firewalls. This enables vsftpd to hand out the correct return address for passive mode connections.
    Esta directriz no tiene un valor predeterminado.
  • pasv_enable — When enabled, passive mode connects are allowed.
    El valor por defecto es Si.
  • pasv_max_port — Specifies the highest possible port sent to the FTP clients for passive mode connections. This setting is used to limit the port range so that firewall rules are easier to create.
    The default value is 0, which does not limit the highest passive port range. The value must not exceed 65535.
  • pasv_min_port — Specifies the lowest possible port sent to the FTP clients for passive mode connections. This setting is used to limit the port range so that firewall rules are easier to create.
    The default value is 0, which does not limit the lowest passive port range. The value must not be lower 1024.
  • pasv_promiscuous — When enabled, data connections are not checked to make sure they are originating from the same IP address. This setting is only useful for certain types of tunneling.

    Avoid enabling the pasv_promiscuous option

    Do not enable this option unless absolutely necessary as it disables an important security feature which verifies that passive mode connections originate from the same IP address as the control connection that initiates the data transfer.
    El valor por defecto es NO.
  • port_enable — When enabled, active mode connects are allowed.
    El valor por defecto es Si.

16.2.6. Recursos adicionales

For more information about vsftpd, refer to the following resources.

16.2.6.1. Documentación instalada

  • The /usr/share/doc/vsftpd-version-number/ directory — Replace version-number with the installed version of the vsftpd package. This directory contains a README with basic information about the software. The TUNING file contains basic performance tuning tips and the SECURITY/ directory contains information about the security model employed by vsftpd.
  • vsftpd related man pages — There are a number of man pages for the daemon and configuration files. The following lists some of the more important man pages.
    Aplicaciones servidor
    • man vsftpd — Describes available command line options for vsftpd.
    Archivos de configuración
    • man vsftpd.conf — Contains a detailed list of options available within the configuration file for vsftpd.
    • man 5 hosts_access — Describes the format and options available within the TCP wrappers configuration files: hosts.allow and hosts.deny.

16.2.6.2. Sitios Web útiles

16.3. Configuración de la impresora

The Printer Configuration tool serves for printer configuring, maintenance of printer configuration files, print spool directories and print filters, and printer classes management.
The tool is based on the Common Unix Printing System (CUPS). If you upgraded the system from a previous Fedora version that used CUPS, the upgrade process preserved the configured printers.

Usando la aplicación web o las herramintas de línea de comando de CUPS

You can perform the same and additional operations on printers directly from the CUPS web application or command line. To access the application, in a web browser, go to http://localhost:631/. For CUPS manuals refer to the links on the Home tab of the web site.

16.3.1. Iniciando la herramienta de configuración de impresora

With the Printer Configuration tool you can perform various operations on existing printers and set up new printers.
On the upper panel, go to Activities, choose Applications and click Printing. Alternatively, run the system-config-printer command from the command line to start the tool.
The Printer Configuration window depicted in Figura 16.2, “Printer Configuration window” appears.
Printer Configuration window
Printer Configuration window
Figura 16.2. Printer Configuration window

16.3.2. Iniciando ajustes de impresora

Printer setup process varies depending on the printer queue type.
If you are setting up a local printer connected with USB, the printer is discovered and added automatically. You will be prompted to confirm the packages to be installed and provide the root password. Local printers connected with other port types and network printers need to be set up manually.
Follow this procedure to start a manual printer setup:
  1. Go to ServerNewPrinter.
  2. In the Authentication Required box, type the root user password and confirm.
  3. Select the printer connection type and provide its details in the area on the right.

16.3.3. Añadir una impresora local

Follow this procedure to add a local printer connected with other than a serial port:
  1. Open the New Printer dialog (refer to Sección 16.3.2, “Iniciando ajustes de impresora”).
  2. If the device does not appear automatically, select the port to which the printer is connected in the list on the left (such as Serial Port #1 or LPT #1).
  3. A la derecha, ingrese las propiedades de conexión:
    for Enter URI
    URI (por ejemplo file:/dev/lp0)
    for Serial Port
    Baud Rate
    Paridad
    Data Bits
    Flow Control
    Añadir una impresora local
    Añadir una impresora local
    Figura 16.3. Añadir una impresora local

  4. Click Forward.
  5. Select the printer model. Refer to Sección 16.3.8, “Selección del modelo de impresora” for details.

16.3.4. Agregando una impresora AppSocket/HP JetDirect

Siga este procedimiento para agregar una impresora AppSocket/HP JetDirect:
  1. In the list on the left, select Network PrinterAppSocket/HP JetDirect.
  2. A la derecha, ingrese los ajustes de conexión:
    Hostname
    nombre de host o dirección IP de la impresora
    Port Number
    printer port listening for print jobs (9100 by default)
    Agregando una impresora JetDirect
    Agregando una impresora JetDirect
    Figura 16.4. Agregando una impresora JetDirect

  3. Click Forward.
  4. Select the printer model. Refer to Sección 16.3.8, “Selección del modelo de impresora” for details.

16.3.5. Añadir una impresora de red IPP

Una impresora IPP es una impresora conectada a un sistema diferente en la misma red TCP/IP. El sistema al cual esta impresora está conectada puede estar ejecutando CUPS o estar simplemente configurada para utilizar IPP.
If a firewall is enabled on the printer server, then the firewall must be configured to allow incoming TCP connections on port 631. Note that the CUPS browsing protocol allows client machines to discover shared CUPS queues automatically. To enable this, the firewall on the client machine must be configured to allow incoming UDP packets on port 631.
Siga este procedimiento para agregar una impresora IPP:
  1. Open the New Printer dialog (refer to Sección 16.3.2, “Iniciando ajustes de impresora”).
  2. In the list of devices on the left, select Network Printer and Internet Printing Protocol (ipp) or Internet Printing Protocol (https).
  3. A la derecha, ingrese los ajustes de conexión:
    Host
    the hostname for the system that controls the printer
    Queue
    the queue name to be given to the new queue (if the box is left empty, a name based on the device node will be used)
    Agregando una impresora IPP
    Impresora de red IPP
    Figura 16.5. Agregando una impresora IPP

  4. Optionally, click Verify to detect the printer.
  5. Haga clic en el botón Siguiente para continuar.
  6. Select the printer model. Refer to Sección 16.3.8, “Selección del modelo de impresora” for details.

16.3.6. Agregando una impresora o equipo LPD/LPR

Siga este procedimiento para agregar una impresora o equipo LPD/LPR:
  1. Open the New Printer dialog (refer to Sección 16.3.2, “Iniciando ajustes de impresora”).
  2. In the list of devices on the left, select Network PrinterLPD/LPR Host or Printer.
  3. A la derecha, ingrese los ajustes de conexión:
    Host
    el nombre de host de la impresora o equipo LPD/LPR
    Optionally, click Probe to find queues on the LPD host.
    Queue
    the queue name to be given to the new queue (if the box is left empty, a name based on the device node will be used)
    Adding an LPD/LPR printer
    Adding an LPD/LPR Printer
    Figura 16.6. Adding an LPD/LPR printer

  4. Haga clic en el botón Siguiente para continuar.
  5. Select the printer model. Refer to Sección 16.3.8, “Selección del modelo de impresora” for details.

16.3.7. Adding a Samba (SMB) printer

Follow this procedure to add a Samba printer:

Installing the samba-client package

Note that in order to add a Samba printer, you need to have the samba-client package installed. You can do so by running, as root:
yum install samba-client
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
  1. Open the New Printer dialog (refer to Sección 16.3.2, “Iniciando ajustes de impresora”).
  2. In the list on the left, select Network PrinterWindows Printer via SAMBA.
  3. Enter the SMB address in the smb:// field. Use the format computer name/printer share. In Figura 16.7, “Adding a SMB printer”, the computer name is dellbox and the printer share is r2.
    Adding a SMB printer
    Impresora SMB
    Figura 16.7. Adding a SMB printer

  4. Click Browse to see the available workgroups/domains. To display only queues of a particular host, type in the host name (NetBios name) and click Browse.
  5. Select either of the options:
    • Prompt user if authentication is required: username and password are collected from the user when printing a document.
    • Set authentication details now: provide authentication information now so it is not required later. In the Username field, enter the username to access the printer. This user must exist on the SMB system, and the user must have permission to access the printer. The default user name is typically guest for Windows servers, or nobody for Samba servers.
  6. Ingrese la Contraseña (si se necesita) para el usuario especificado en el campo Nombre de usuario.

    Be careful when choosing a password

    Los nombres de usuarios y las contraseñas de la impresora Samba se encuentran almacenados en el servidor de la impresora como archivos encriptados que root y lpd pueden leer. Por lo tanto, los otros usuarios que tienen acceso root al servidor de la impresora pueden ver el nombre de usuario y la contraseña que usted utiliza para acceder a la impresora Samba.
    As such, when you choose a username and password to access a Samba printer, it is advisable that you choose a password that is different from what you use to access your local Fedora system.
    Si hay archivos compartidos en el servidor de la impreso Samba se recomienda que también utilicen una contraseña diferente de la que utiliza la fila de impresión.
  7. Click Verify to test the connection. Upon successful verification, a dialog box appears confirming printer share accessibility.
  8. Click Forward.
  9. Select the printer model. Refer to Sección 16.3.8, “Selección del modelo de impresora” for details.

16.3.8. Selección del modelo de impresora

Once you have properly selected a printer connection type, the system attempts to acquire a driver. If the process fails, you can locate or search for the driver resources manually.
Follow this procedure to provide the printer driver and finish the installation:
  1. In the window displayed after the automatic driver detection has failed, select one of the following options:
    • Select printer from database — the system chooses a driver based on the selected make of your printer from the list of Makes. If your printer model is not listed, choose Generic.
    • Provide PPD file — the system uses the provided PostScript Printer Description (PPD) file for installation. A PPD file may also be delivered with your printer as being normally provided by the manufacturer. If the PPD file is available, you can choose this option and use the browser bar below the option description to select the PPD file.
    • Search for a printer driver to download — enter the make and model of your printer into the Make and model field to search on OpenPrinting.org for the appropriate packages.
    Selecting a printer brand
    Selecting a printer brand from the printer database brands.
    Figura 16.8. Selecting a printer brand

  2. Depending on your previous choice provide details in the area displayed below:
    • Printer brand for the Select printer from database option
    • PPD file location for the Provide PPD file option
    • Printer make and model for the Search for a printer driver to download option
  3. Haga clic en el botón Siguiente para continuar.
  4. If applicable for your option, window shown in Figura 16.9, “Selecting a printer model” appears. Choose the corresponding model in the Models column on the left.

    Selecting a printer driver

    On the right, the recommended printed driver is automatically selected; however, you can select another available driver. The print driver processes the data that you want to print into a format the printer can understand. Since a local printer is attached directly to your computer, you need a printer driver to process the data that is sent to the printer.
    Selecting a printer model
    Selecting a Printer Model with a Driver Menu
    Figura 16.9. Selecting a printer model

  5. Click Forward.
  6. Under the Describe Printer enter a unique name for the printer in the Printer Name field. The printer name can contain letters, numbers, dashes (-), and underscores (_); it must not contain any spaces. You can also use the Description and Location fields to add further printer information. Both fields are optional, and may contain spaces.
    Printer setup
    Printer Setup
    Figura 16.10. Printer setup

  7. Click Apply to confirm your printer configuration and add the print queue if the settings are correct. Click Back to modify the printer configuration.
  8. After the changes are applied, a dialog box appears allowing you to print a test page. Click Print Test Page to print a test page now. Alternatively, you can print a test page also later, refer to Sección 16.3.9, “Printing a test page” for details.

16.3.9. Printing a test page

After you have set up a printer or changed a printer configuration, print a test page to make sure the printer is functioning properly:
  1. Right-click the printer in the Printing window and click Properties.
  2. In the Properties window, click Settings on the left.
  3. On the displayed Settings tab, click the Print Test Page button.

16.3.10. Modificar impresoras existentes

To delete an existing printer, in the Printer Configuration window, select the printer and go to PrinterDelete. Confirm the printer deletion. Alternatively, press the Delete key.
To set the default printer, right-click the printer in the printer list and click the Set As Default button in the context menu.

16.3.10.1. The Settings Page

To change printer driver configuration, double-click the corresponding name in the Printer list and click the Settings label on the left to display the Settings page.
You can modify printer settings such as make and model, print a test page, change the device location (URI), and more.
Settings page
Settings Page
Figura 16.11. Settings page

16.3.10.2. The Policies Page

Click the Policies button on the left to change settings in printer state and print output.
You can select the printer states, configure the Error Policy of the printer (you can decide to abort the print job, retry, or stop it if an error occurs).
You can also create a banner page (a page that describes aspects of the print job such as the originating printer, the username from the which the job originated, and the security status of the document being printed): click the Starting Banner or Ending Banner drop-menu and choose the option that best describes the nature of the print jobs (such as topsecret, classified, or confidential).
16.3.10.2.1. Sharing Printers
On the Policies page, you can mark a printer as shared: if a printer is shared, users published on the network can use it. To allow the sharing function for printers, go to ServerSettings and select Publish shared printers connected to this system.
Finally, ensure that the firewall allows incoming TCP connections to port 631, which is Network Printing Server (IPP) in system-config-firewall.
Policies page
Policies Page
Figura 16.12. Policies page

16.3.10.2.2. The Access Control Page
You can change user-level access to the configured printer on the Access Control page. Click the Access Control label on the left to display the page. Select either Allow printing for everyone except these users or Deny printing for everyone except these users and define the user set below: enter the user name in the text box and click the Add button to add the user to the user set.
Access Control page
Access Control Page
Figura 16.13. Access Control page

16.3.10.2.3. The Printer Options Page
The Printer Options page contains various configuration options for the printer media and output, and its content may vary from printer to printer. It contains general printing, paper, quality, and printing size settings.
Printer Options page
Printer Options Page
Figura 16.14. Printer Options page

16.3.10.2.4. Job Options Page
On the Job Options page, you can detail the printer job options. Click the Job Options label on the left to display the page. Edit the default settings to apply custom job options, such as number of copies, orientation, pages per side,scaling (increase or decrease the size of the printable area, which can be used to fit an oversize print area onto a smaller physical sheet of print medium), detailed text options, and custom job options.
Job Options page
Job Options Page
Figura 16.15. Job Options page

16.3.10.2.5. Ink/Toner Levels Page
The Ink/Toner Levels page contains details on toner status if available and printer status messages. Click the Ink/Toner Levels label on the left to display the page.
Ink/Toner Levels page
Ink/Toner Levels Page
Figura 16.16. Ink/Toner Levels page

16.3.10.3. Administración de trabajos de impresión

When you send a print job to the printer daemon, such as printing a text file from Emacs or printing an image from GIMP, the print job is added to the print spool queue. The print spool queue is a list of print jobs that have been sent to the printer and information about each print request, such as the status of the request, the job number, and more.
During the printing process, messages informing about the process appear in the notification area.
GNOME Print Status
GNOME Print Status
Figura 16.17. GNOME Print Status

To cancel, hold, release, reprint or authenticate a print job, select the job in the GNOME Print Status and on the Job menu, click the respective command.
To view the list of print jobs in the print spool from a shell prompt, type the command lpstat -o. The last few lines look similar to the following:
Ejemplo 16.1. Example of lpstat -o output
$ lpstat -o
Charlie-60              twaugh            1024   Tue 08 Feb 2011 16:42:11 GMT
Aaron-61                twaugh            1024   Tue 08 Feb 2011 16:42:44 GMT
Ben-62                  root              1024   Tue 08 Feb 2011 16:45:42 GMT

If you want to cancel a print job, find the job number of the request with the command lpstat -o and then use the command cancel job number. For example, cancel 60 would cancel the print job in Ejemplo 16.1, “Example of lpstat -o output”. You cannot cancel print jobs that were started by other users with the cancel command. However, you can enforce deletion of such job by issuing the cancel -U root job_number command. To prevent such canceling, change the printer operation policy to Authenticated to force root authentication.
You can also print a file directly from a shell prompt. For example, the command lp sample.txt prints the text file sample.txt. The print filter determines what type of file it is and converts it into a format the printer can understand.

16.3.11. Recursos adicionales

To learn more about printing on Fedora, refer to the following resources.

16.3.11.1. Documentación instalada

man lp
The manual page for the lpr command that allows you to print files from the command line.
man cancel
The manual page for the command line utility to remove print jobs from the print queue.
man mpage
The manual page for the command line utility to print multiple pages on one sheet of paper.
man cupsd
The manual page for the CUPS printer daemon.
man cupsd.conf
The manual page for the CUPS printer daemon configuration file.
man classes.conf
The manual page for the class configuration file for CUPS.
man lpstat
The manual page for the lpstat command, which displays status information about classes, jobs, and printers.

16.3.11.2. Sitios Web útiles

http://www.linuxprinting.org/
GNU/Linux Printing contains a large amount of information about printing in Linux.
http://www.cups.org/
Documentation, FAQs, and newsgroups about CUPS.

Parte VI. Monitorización y automatizado

This part describes various tools that allow system administrators to monitor system performance, automate system tasks, and report bugs.

Tabla de contenidos

17. System Monitoring Tools
17.1. Viewing System Processes
17.1.1. Using the ps Command
17.1.2. Using the top Command
17.1.3. Using the System Monitor Tool
17.2. Viewing Memory Usage
17.2.1. Using the free Command
17.2.2. Using the System Monitor Tool
17.3. Viewing CPU Usage
17.3.1. Using the System Monitor Tool
17.4. Viewing Block Devices and File Systems
17.4.1. Using the lsblk Command
17.4.2. Using the blkid Command
17.4.3. Using the partx Command
17.4.4. Using the findmnt Command
17.4.5. Using the df Command
17.4.6. Using the du Command
17.4.7. Using the System Monitor Tool
17.5. Viewing Hardware Information
17.5.1. Using the lspci Command
17.5.2. Using the lsusb Command
17.5.3. Using the lspcmcia Command
17.5.4. Using the lscpu Command
17.6. Monitoring Performance with Net-SNMP
17.6.1. Installing Net-SNMP
17.6.2. Running the Net-SNMP Daemon
17.6.3. Configuring Net-SNMP
17.6.4. Retrieving Performance Data over SNMP
17.6.5. Extending Net-SNMP
17.7. Recursos adicionales
17.7.1. Documentación instalada
18. Viewing and Managing Log Files
18.1. Configuring rsyslog
18.1.1. Global Directives
18.1.2. Modules
18.1.3. Rules
18.1.4. rsyslog Command Line Configuration
18.2. Localizar archivos de registro
18.2.1. Configuring logrotate
18.3. Visualizar los archivos de registro
18.4. Adding a Log File
18.5. Control de Archivos de Registro
18.6. Recursos adicionales
18.6.1. Documentación instalada
18.6.2. Sitios Web útiles
19. Automating System Tasks
19.1. Cron y Anacron
19.1.1. Iniciar y finalizar el servicio
19.1.2. Configuring Anacron Jobs
19.1.3. Configuring Cron Jobs
19.1.4. Controlando el acceso a Cron
19.1.5. Black/White Listing of Cron Jobs
19.2. At y Batch
19.2.1. Configuración de tareas At
19.2.2. Configuración de tareas Batch
19.2.3. Visualizando las tareas pendientes
19.2.4. Opciones adicionales de la línea de comandos
19.2.5. Control de acceso a At y Batch
19.2.6. Iniciar y finalizar el servicio
19.3. Recursos adicionales
19.3.1. Documentación instalada
20. OProfile
20.1. Descripción general de las herramientas
20.2. Configuración de Oprofile
20.2.1. Especificar el Kernel
20.2.2. Configurar los eventos a supervisar
20.2.3. Separar perfiles del Kernel y del espacio del usuario
20.3. Iniciar y detener Oprofile
20.4. Guardar los datos
20.5. Análisis de los datos
20.5.1. Using opreport
20.5.2. Using opreport on a Single Executable
20.5.3. Obtener salidas más detalladas sobre los módulos
20.5.4. Using opannotate
20.6. Understanding /dev/oprofile/
20.7. Ejemplo de uso
20.8. OProfile Support for Java
20.8.1. Profiling Java Code
20.9. Interfaz gráfica
20.10. OProfile and SystemTap
20.11. Recursos adicionales
20.11.1. Documentos instalados
20.11.2. Sitios Web útiles

Capítulo 17. System Monitoring Tools

In order to configure the system, system administrators often need to determine the amount of free memory, how much free disk space is available, how the hard drive is partitioned, or what processes are running.

17.1. Viewing System Processes

17.1.1. Using the ps Command

The ps command allows you to display information about running processes. It produces a static list, that is, a snapshot of what is running when you execute the command. If you want a constantly updated list of running processes, use the top command or the System Monitor application instead.
To list all processes that are currently running on the system including processes owned by other users, type the following at a shell prompt:
ps ax
For each listed process, the ps ax command displays the process ID (PID), the terminal that is associated with it (TTY), the current status (STAT), the cumulated CPU time (TIME), and the name of the executable file (COMMAND). For example:
~]$ ps ax
  PID TTY      STAT   TIME COMMAND
    1 ?        Ss     0:02 /usr/lib/systemd/systemd --system --deserialize 20
    2 ?        S      0:00 [kthreadd]
    3 ?        S      0:00 [ksoftirqd/0]
    5 ?        S      0:00 [kworker/u:0]
    6 ?        S      0:00 [migration/0]
[output truncated]
To display the owner alongside each process, use the following command:
ps aux
Apart from the information provided by the ps ax command, ps aux displays the effective username of the process owner (USER), the percentage of the CPU (%CPU) and memory (%MEM) usage, the virtual memory size in kilobytes (VSZ), the non-swapped physical memory size in kilobytes (RSS), and the time or date the process was started. For instance:
~]$ ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.3  53128  2988 ?        Ss   13:28   0:02 /usr/lib/systemd/systemd --system --deserialize 20
root         2  0.0  0.0      0     0 ?        S    13:28   0:00 [kthreadd]
root         3  0.0  0.0      0     0 ?        S    13:28   0:00 [ksoftirqd/0]
root         5  0.0  0.0      0     0 ?        S    13:28   0:00 [kworker/u:0]
root         6  0.0  0.0      0     0 ?        S    13:28   0:00 [migration/0]
[output truncated]
You can also use the ps command in a combination with grep to see if a particular process is running. For example, to determine if Emacs is running, type:
~]$ ps ax | grep emacs
 2625 ?        Sl     0:00 emacs
For a complete list of available command line options, refer to the ps(1) manual page.

17.1.2. Using the top Command

The top command displays a real-time list of processes that are running on the system. It also displays additional information about the system uptime, current CPU and memory usage, or total number of running processes, and allows you to perform actions such as sorting the list or killing a process.
To run the top command, type the following at a shell prompt:
top
For each listed process, the top command displays the process ID (PID), the effective username of the process owner (USER), the priority (PR), the nice value (NI), the amount of virtual memory the process uses (VIRT), the amount of non-swapped physical memory the process uses (RES), the amount of shared memory the process uses (SHR), the percentage of the CPU (%CPU) and memory (%MEM) usage, the cumulated CPU time (TIME+), and the name of the executable file (COMMAND). For example:
~]$ top
top - 19:22:08 up  5:53,  3 users,  load average: 1.08, 1.03, 0.82
Tasks: 117 total,   2 running, 115 sleeping,   0 stopped,   0 zombie
Cpu(s):  9.3%us,  1.3%sy,  0.0%ni, 85.1%id,  0.0%wa,  1.7%hi,  0.0%si,  2.6%st
Mem:    761956k total,   617256k used,   144700k free,    24356k buffers
Swap:  1540092k total,    55780k used,  1484312k free,   256408k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
  510 john      20   0 1435m  99m  18m S  9.0 13.3   3:30.52 gnome-shell
32686 root      20   0  156m  27m 3628 R  2.0  3.7   0:48.69 Xorg
 2625 john      20   0  488m  27m  14m S  0.3  3.7   0:00.70 emacs
    1 root      20   0 53128 2640 1152 S  0.0  0.3   0:02.83 systemd
    2 root      20   0     0    0    0 S  0.0  0.0   0:00.01 kthreadd
    3 root      20   0     0    0    0 S  0.0  0.0   0:00.18 ksoftirqd/0
    5 root      20   0     0    0    0 S  0.0  0.0   0:00.00 kworker/u:0
    6 root      RT   0     0    0    0 S  0.0  0.0   0:00.00 migration/0
    7 root      RT   0     0    0    0 S  0.0  0.0   0:00.30 watchdog/0
    8 root       0 -20     0    0    0 S  0.0  0.0   0:00.00 cpuset
    9 root       0 -20     0    0    0 S  0.0  0.0   0:00.00 khelper
   10 root      20   0     0    0    0 S  0.0  0.0   0:00.00 kdevtmpfs
   11 root       0 -20     0    0    0 S  0.0  0.0   0:00.00 netns
   12 root      20   0     0    0    0 S  0.0  0.0   0:00.11 sync_supers
   13 root      20   0     0    0    0 S  0.0  0.0   0:00.00 bdi-default
   14 root       0 -20     0    0    0 S  0.0  0.0   0:00.00 kintegrityd
   15 root       0 -20     0    0    0 S  0.0  0.0   0:00.00 kblockd
Tabla 17.1, “Interactive top commands” contains useful interactive commands that you can use with top. For more information, refer to the top(1) manual page.
Tabla 17.1. Interactive top commands
Comando Descripción
Enter, Space Immediately refreshes the display.
h, ? Displays a help screen.
k Kills a process. You are prompted for the process ID and the signal to send to it.
n Changes the number of displayed processes. You are prompted to enter the number.
u Sorts the list by user.
M Sorts the list by memory usage.
P Sorts the list by CPU usage.
q Terminates the utility and returns to the shell prompt.

17.1.3. Using the System Monitor Tool

The Processes tab of the System Monitor tool allows you to view, search for, change the priority of, and kill processes from the graphical user interface.
To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the Activities menu, or type gnome-system-monitor at a shell prompt. Then click the Processes tab to view the list of running processes.
System Monitor — Processes
The Processes tab of the System Monitor application.
Figura 17.1. System Monitor — Processes

For each listed process, the System Monitor tool displays its name (Process Name), current status (Status), percentage of the memory usage (% CPU), nice value (Nice), process ID (ID), memory usage (Memory), the channel the process is waiting in (Waiting Channel), and additional details about the session (Session). To sort the information by a specific column in ascending order, click the name of that column. Click the name of the column again to toggle the sort between ascending and descending order.
By default, the System Monitor tool displays a list of processes that are owned by the current user. Selecting various options from the View menu allows you to:
  • view only active processes,
  • view all processes,
  • view your processes,
  • view process dependencies,
  • view a memory map of a selected process,
  • view the files opened by a selected process, and
  • refresh the list of processes.
Additionally, various options in the Edit menu allows you to:
  • stop a process,
  • continue running a stopped process,
  • end a process,
  • kill a process,
  • change the priority of a selected process, and
  • edit the System Monitor preferences, such as the refresh interval for the list of processes, or what information to show.
You can also end a process by selecting it from the list and clicking the End Process button.

17.2. Viewing Memory Usage

17.2.1. Using the free Command

The free command allows you to display the amount of free and used memory on the system. To do so, type the following at a shell prompt:
free
The free command provides information about both the physical memory (Mem) and swap space (Swap). It displays the total amount of memory (total), as well as the amount of memory that is in use (used), free (free), shared (shared), in kernel buffers (buffers), and cached (cached). For example:
~]$ free
             total       used       free     shared    buffers     cached
Mem:        761956     607500     154456          0      37404     156176
-/+ buffers/cache:     413920     348036
Swap:      1540092      84408    1455684
By default, free displays the values in kilobytes. To display the values in megabytes, supply the -m command line option:
free -m
For instance:
~]$ free -m
             total       used       free     shared    buffers     cached
Mem:           744        593        150          0         36        152
-/+ buffers/cache:        404        339
Swap:         1503         82       1421
For a complete list of available command line options, refer to the free(1) manual page.

17.2.2. Using the System Monitor Tool

The Resources tab of the System Monitor tool allows you to view the amount of free and used memory on the system.
To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the Activities menu, or type gnome-system-monitor at a shell prompt. Then click the Resources tab to view the system's memory usage.
System Monitor — Resources
The Resources tab of the System Monitor application.
Figura 17.2. System Monitor — Resources

In the Memory and Swap History section, the System Monitor tool displays a graphical representation of the memory and swap usage history, as well as the total amount of the physical memory (Memory) and swap space (Swap) and how much of it is in use.

17.3. Viewing CPU Usage

17.3.1. Using the System Monitor Tool

The Resources tab of the System Monitor tool allows you to view the current CPU usage on the system.
To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the Activities menu, or type gnome-system-monitor at a shell prompt. Then click the Resources tab to view the system's CPU usage.
System Monitor — Resources
The Resources tab of the System Monitor application.
Figura 17.3. System Monitor — Resources

In the CPU History section, the System Monitor tool displays a graphical representation of the CPU usage history and shows the percentage of how much CPU is currently in use.

17.4. Viewing Block Devices and File Systems

17.4.1. Using the lsblk Command

The lsblk command allows you to display a list of available block devices. To do so, type the following at a shell prompt:
lsblk
For each listed block device, the lsblk command displays the device name (NAME), major and minor device number (MAJ:MIN), if the device is removable (RM), what is its size (SIZE), if the device is read-only (RO), what type is it (TYPE), and where the device is mounted (MOUNTPOINT). For example:
~]$ lsblk
NAME                         MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sr0                           11:0    1  1024M  0 rom
vda                          252:0    0    20G  0 disk
|-vda1                       252:1    0   500M  0 part /boot
`-vda2                       252:2    0  19.5G  0 part
  |-vg_fedora-lv_swap (dm-0) 253:0    0   1.5G  0 lvm  [SWAP]
  `-vg_fedora-lv_root (dm-1) 253:1    0    18G  0 lvm  /
By default, lsblk lists block devices in a tree-like format. To display the information as an ordinary list, add the -l command line option:
lsblk -l
For instance:
~]$ lsblk -l
NAME                     MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sr0                       11:0    1  1024M  0 rom
vda                      252:0    0    20G  0 disk
vda1                     252:1    0   500M  0 part /boot
vda2                     252:2    0  19.5G  0 part
vg_fedora-lv_swap (dm-0) 253:0    0   1.5G  0 lvm  [SWAP]
vg_fedora-lv_root (dm-1) 253:1    0    18G  0 lvm  /
For a complete list of available command line options, refer to the lsblk(8) manual page.

17.4.2. Using the blkid Command

The blkid command allows you to display information about available block devices. To do so, type the following at a shell prompt as root:
blkid
For each listed block device, the blkid command displays available attributes such as its universally unique identifier (UUID), file system type (TYPE), or volume label (LABEL). For example:
~]# blkid
/dev/vda1: UUID="4ea24c68-ab10-47d4-8a6b-b8d3a002acba" TYPE="ext4"
/dev/vda2: UUID="iJ9YwJ-leFf-A1zb-VVaK-H9t1-raLW-HoqlUG" TYPE="LVM2_member"
/dev/mapper/vg_fedora-lv_swap: UUID="d6d755bc-3e3e-4e8f-9bb5-a5e7f4d86ffd" TYPE="swap"
/dev/mapper/vg_fedora-lv_root: LABEL="_Fedora-17-x86_6" UUID="77ba9149-751a-48e0-974f-ad94911734b9" TYPE="ext4"
By default, the lsblk command lists all available block devices. To display information about a particular device only, specify the device name on the command line:
blkid device_name
For instance, to display information about /dev/vda1, type:
~]# blkid /dev/vda1
/dev/vda1: UUID="4ea24c68-ab10-47d4-8a6b-b8d3a002acba" TYPE="ext4"
You can also use the above command with the -p and -o udev command line options to obtain more detailed information. Note that root privileges are required to run this command:
blkid -po udev device_name
For example:
~]# blkid -po udev /dev/vda1
ID_FS_UUID=4ea24c68-ab10-47d4-8a6b-b8d3a002acba
ID_FS_UUID_ENC=4ea24c68-ab10-47d4-8a6b-b8d3a002acba
ID_FS_VERSION=1.0
ID_FS_TYPE=ext4
ID_FS_USAGE=filesystem
ID_PART_ENTRY_SCHEME=dos
ID_PART_ENTRY_TYPE=0x83
ID_PART_ENTRY_FLAGS=0x80
ID_PART_ENTRY_NUMBER=1
ID_PART_ENTRY_OFFSET=2048
ID_PART_ENTRY_SIZE=1024000
ID_PART_ENTRY_DISK=252:0
For a complete list of available command line options, refer to the blkid(8) manual page.

17.4.3. Using the partx Command

The partx command allows you to display a list of disk partitions. To list the partition table of a particular disk, as root, run this command with the -s option followed by the device name:
partx -s device_name
For example, to list partitions on /dev/vda, type:
~]# partx -s /dev/vda
NR   START      END  SECTORS  SIZE NAME UUID
 1    2048  1026047  1024000  500M
 2 1026048 41943039 40916992 19.5G
For a complete list of available command line options, refer to the partx(8) manual page.

17.4.4. Using the findmnt Command

The findmnt command allows you to display a list of currently mounted file systems. To do so, type the following at a shell prompt:
findmnt
For each listed file system, the findmnt command displays the target mount point (TARGET), source device (SOURCE), file system type (FSTYPE), and relevant mount options (OPTIONS). For example:
~]$ findmnt
TARGET                           SOURCE     FSTYPE   OPTIONS
/                                /dev/mapper/vg_fedora-lv_root
                                            ext4     rw,relatime,seclabel,data=o
|-/proc                          proc       proc     rw,nosuid,nodev,noexec,rela
| `-/proc/sys/fs/binfmt_misc     systemd-1  autofs   rw,relatime,fd=23,pgrp=1,ti
|-/sys                           sysfs      sysfs    rw,nosuid,nodev,noexec,rela
| |-/sys/kernel/security         securityfs security rw,nosuid,nodev,noexec,rela
| |-/sys/fs/selinux              selinuxfs  selinuxf rw,relatime
| |-/sys/fs/cgroup               tmpfs      tmpfs    rw,nosuid,nodev,noexec,secl
| | |-/sys/fs/cgroup/systemd     cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/cpuset      cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/cpu,cpuacct cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/memory      cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/devices     cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/freezer     cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/net_cls     cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | |-/sys/fs/cgroup/blkio       cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| | `-/sys/fs/cgroup/perf_event  cgroup     cgroup   rw,nosuid,nodev,noexec,rela
| |-/sys/kernel/debug            debugfs    debugfs  rw,relatime
| `-/sys/kernel/config           configfs   configfs rw,relatime
[output truncated]
By default, findmnt lists file systems in a tree-like format. To display the information as an ordinary list, add the -l command line option:
findmnt -l
For instance:
~]$ findmnt -l
TARGET                     SOURCE     FSTYPE   OPTIONS
/proc                      proc       proc     rw,nosuid,nodev,noexec,relatime
/sys                       sysfs      sysfs    rw,nosuid,nodev,noexec,relatime,s
/dev                       devtmpfs   devtmpfs rw,nosuid,seclabel,size=370080k,n
/dev/pts                   devpts     devpts   rw,nosuid,noexec,relatime,seclabe
/dev/shm                   tmpfs      tmpfs    rw,nosuid,nodev,seclabel
/run                       tmpfs      tmpfs    rw,nosuid,nodev,seclabel,mode=755
/                          /dev/mapper/vg_fedora-lv_root
                                      ext4     rw,relatime,seclabel,data=ordered
/sys/kernel/security       securityfs security rw,nosuid,nodev,noexec,relatime
/sys/fs/selinux            selinuxfs  selinuxf rw,relatime
/sys/fs/cgroup             tmpfs      tmpfs    rw,nosuid,nodev,noexec,seclabel,m
/sys/fs/cgroup/systemd     cgroup     cgroup   rw,nosuid,nodev,noexec,relatime,r
[output truncated]
You can also choose to list only file systems of a particular type. To do so, add the -t command line option followed by a file system type:
findmnt -t type
For example, to all list ext4 file systems, type:
~]$ findmnt -t ext4
TARGET SOURCE                        FSTYPE OPTIONS
/      /dev/mapper/vg_fedora-lv_root ext4   rw,relatime,seclabel,data=ordered
/boot  /dev/vda1                     ext4   rw,relatime,seclabel,data=ordered
For a complete list of available command line options, refer to the findmnt(8) manual page.

17.4.5. Using the df Command

The df command allows you to display a detailed report on the system's disk space usage. To do so, type the following at a shell prompt:
df
For each listed file system, the df command displays its name (Filesystem), size (1K-blocks or Size), how much space is used (Used), how much space is still available (Available), the percentage of space usage (Use%), and where is the file system mounted (Mounted on). For example:
~]$ df
Filesystem                    1K-blocks    Used Available Use% Mounted on
rootfs                         18877356 4605476  14082844  25% /
devtmpfs                         370080       0    370080   0% /dev
tmpfs                            380976     256    380720   1% /dev/shm
tmpfs                            380976    3048    377928   1% /run
/dev/mapper/vg_fedora-lv_root  18877356 4605476  14082844  25% /
tmpfs                            380976       0    380976   0% /sys/fs/cgroup
tmpfs                            380976       0    380976   0% /media
/dev/vda1                        508745   85018    398127  18% /boot
By default, the df command shows the partition size in 1 kilobyte blocks and the amount of used and available disk space in kilobytes. To view the information in megabytes and gigabytes, supply the -h command line option, which causes df to display the values in a human-readable format:
df -h
For instance:
~]$ df -h
Filesystem                     Size  Used Avail Use% Mounted on
rootfs                          19G  4.4G   14G  25% /
devtmpfs                       362M     0  362M   0% /dev
tmpfs                          373M  256K  372M   1% /dev/shm
tmpfs                          373M  3.0M  370M   1% /run
/dev/mapper/vg_fedora-lv_root   19G  4.4G   14G  25% /
tmpfs                          373M     0  373M   0% /sys/fs/cgroup
tmpfs                          373M     0  373M   0% /media
/dev/vda1                      497M   84M  389M  18% /boot
Note that the /dev/shm entry represents the system's virtual memory file system, /sys/fs/cgroup is a cgroup file system, and /run contains information about the running system.
For a complete list of available command line options, refer to the df(1) manual page.

17.4.6. Using the du Command

The du command allows you to displays the amount of space that is being used by files in a directory. To display the disk usage for each of the subdirectories in the current working directory, run the command with no additional command line options:
du
For example:
~]$ du
8       ./.gconf/apps/gnome-terminal/profiles/Default
12      ./.gconf/apps/gnome-terminal/profiles
16      ./.gconf/apps/gnome-terminal
[output truncated]
460     ./.gimp-2.6
68828   .
By default, the du command displays the disk usage in kilobytes. To view the information in megabytes and gigabytes, supply the -h command line option, which causes the utility to display the values in a human-readable format:
du -h
For instance:
~]$ du -h
8.0K    ./.gconf/apps/gnome-terminal/profiles/Default
12K     ./.gconf/apps/gnome-terminal/profiles
16K     ./.gconf/apps/gnome-terminal
[output truncated]
460K    ./.gimp-2.6
68M     .
At the end of the list, the du command always shows the grand total for the current directory. To display only this information, supply the -s command line option:
du -sh
For example:
~]$ du -sh
68M     .
For a complete list of available command line options, refer to the du(1) manual page.

17.4.7. Using the System Monitor Tool

The File Systems tab of the System Monitor tool allows you to view file systems and disk space usage in the graphical user interface.
To start the System Monitor tool, either select ApplicationsSystem ToolsSystem Monitor from the Activities menu, or type gnome-system-monitor at a shell prompt. Then click the File Systems tab to view a list of file systems.
System Monitor — File Systems
The File Systems tab of the System Monitor application.
Figura 17.4. System Monitor — File Systems

For each listed file system, the System Monitor tool displays the source device (Device), target mount point (Directory), and file system type (Type), as well as its size (Total) and how much space is free (Free), available (Available), and used (Used).

17.5. Viewing Hardware Information

17.5.1. Using the lspci Command

The lspci command lists all PCI devices that are present in the system:
lspci
For example:
~]$ lspci
00:00.0 Host bridge: Intel Corporation 82X38/X48 Express DRAM Controller
00:01.0 PCI bridge: Intel Corporation 82X38/X48 Express Host-Primary PCI Express Bridge
00:1a.0 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 02)
00:1a.1 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5 (rev 02)
00:1a.2 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6 (rev 02)
[output truncated]
You can also use the -v command line option to display more verbose output, or -vv for very verbose output:
lspci -v|-vv
For instance, to determine the manufacturer, model, and memory size of a system's video card, type:
~]$ lspci -v
[output truncated]

01:00.0 VGA compatible controller: nVidia Corporation G84 [Quadro FX 370] (rev a1) (prog-if 00 [VGA controller])
        Subsystem: nVidia Corporation Device 0491
        Physical Slot: 2
        Flags: bus master, fast devsel, latency 0, IRQ 16
        Memory at f2000000 (32-bit, non-prefetchable) [size=16M]
        Memory at e0000000 (64-bit, prefetchable) [size=256M]
        Memory at f0000000 (64-bit, non-prefetchable) [size=32M]
        I/O ports at 1100 [size=128]
        Expansion ROM at <unassigned> [disabled]
        Capabilities: <access denied>
        Kernel driver in use: nouveau
        Kernel modules: nouveau, nvidiafb

[output truncated]
For a complete list of available command line options, refer to the lspci(8) manual page.

17.5.2. Using the lsusb Command

The lsusb command allows you to display information about USB buses and devices that are attached to them. To list all USB devices that are in the system, type the following at a shell prompt:
lsusb
This displays a simple list of devices, for example:
~]$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
[output truncated]
Bus 001 Device 002: ID 0bda:0151 Realtek Semiconductor Corp. Mass Storage Device (Multicard Reader)
Bus 008 Device 002: ID 03f0:2c24 Hewlett-Packard Logitech M-UAL-96 Mouse
Bus 008 Device 003: ID 04b3:3025 IBM Corp.
You can also use the -v command line option to display more verbose output:
lsusb -v
For instance:
~]$ lsusb -v
[output truncated]

Bus 008 Device 002: ID 03f0:2c24 Hewlett-Packard Logitech M-UAL-96 Mouse
Device Descriptor:
  bLength                18
  bDescriptorType         1
  bcdUSB               2.00
  bDeviceClass            0 (Defined at Interface level)
  bDeviceSubClass         0
  bDeviceProtocol         0
  bMaxPacketSize0         8
  idVendor           0x03f0 Hewlett-Packard
  idProduct          0x2c24 Logitech M-UAL-96 Mouse
  bcdDevice           31.00
  iManufacturer           1
  iProduct                2
  iSerial                 0
  bNumConfigurations      1
  Configuration Descriptor:
    bLength                 9
    bDescriptorType         2
[output truncated]
For a complete list of available command line options, refer to the lsusb(8) manual page.

17.5.3. Using the lspcmcia Command

The lspcmcia command allows you to list all PCMCIA devices that are present in the system. To do so, type the following at a shell prompt:
lspcmcia
For example:
~]$ lspcmcia
Socket 0 Bridge:        [yenta_cardbus]         (bus ID: 0000:15:00.0)
You can also use the -v command line option to display more verbose information, or -vv to increase the verbosity level even further:
lspcmcia -v|-vv
For instance:
~]$ lspcmcia -v
Socket 0 Bridge:        [yenta_cardbus]         (bus ID: 0000:15:00.0)
        Configuration:  state: on       ready: unknown
For a complete list of available command line options, refer to the pccardctl(8) manual page.

17.5.4. Using the lscpu Command

The lscpu command allows you to list information about CPUs that are present in the system, including the number of CPUs, their architecture, vendor, family, model, CPU caches, etc. To do so, type the following at a shell prompt:
lscpu
For example:
~]$ lscpu
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                4
On-line CPU(s) list:   0-3
Thread(s) per core:    1
Core(s) per socket:    4
Socket(s):             1
NUMA node(s):          1
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 23
Stepping:              7
CPU MHz:               1998.000
BogoMIPS:              4999.98
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              3072K
NUMA node0 CPU(s):     0-3
For a complete list of available command line options, refer to the lscpu(1) manual page.

17.6. Monitoring Performance with Net-SNMP

Fedora 17 includes the Net-SNMP software suite, which includes a flexible and extensible Simple Network Management Protocol (SNMP) agent. This agent and its associated utilities can be used to provide performance data from a large number of systems to a variety of tools which support polling over the SNMP protocol.
This section provides information on configuring the Net-SNMP agent to securely provide performance data over the network, retrieving the data using the SNMP protocol, and extending the SNMP agent to provide custom performance metrics.

17.6.1. Installing Net-SNMP

The Net-SNMP software suite is available as a set of RPM packages in the Fedora software distribution. Tabla 17.2, “Available Net-SNMP packages” summarizes each of the packages and their contents.
Tabla 17.2. Available Net-SNMP packages
Package Provides
net-snmp The SNMP Agent Daemon and documentation. This package is required for exporting performance data.
net-snmp-libs The netsnmp library and the bundled management information bases (MIBs). This package is required for exporting performance data.
net-snmp-utils SNMP clients such as snmpget and snmpwalk. This package is required in order to query a system's performance data over SNMP.
net-snmp-perl The mib2c utility and the NetSNMP Perl module.
net-snmp-python An SNMP client library for Python.

To install any of these packages, use the yum command in the following form:
yum install package
For example, to install the SNMP Agent Daemon and SNMP clients used in the rest of this section, type the following at a shell prompt:
~]# yum install net-snmp net-snmp-libs net-snmp-utils
Note that you must have superuser privileges (that is, you must be logged in as root) to run this command. For more information on how to install new packages in Fedora, refer to Sección 4.2.4, “Installing Packages”.

17.6.2. Running the Net-SNMP Daemon

The net-snmp package contains snmpd, the SNMP Agent Daemon. This section provides information on how to start, stop, and restart the snmpd service, and shows how to enable or disable it in the multi-user target unit. For more information on the concept of target units and how to manage system services in Fedora in general, refer to Capítulo 8, Services and Daemons.

17.6.2.1. Starting the Service

To run the snmpd service in the current session, type the following at a shell prompt as root:
systemctl start snmpd.service
To configure the service to be automatically started at boot time, use the following command:
systemctl enable snmpd.service
This will enable the service in the multi-user target unit.

17.6.2.2. Stopping the Service

To stop the running snmpd service, type the following at a shell prompt as root:
systemctl stop snmpd.service
To disable starting the service at boot time, use the following command:
systemctl disable snmpd.service
This will disable the service in the multi-user target unit.

17.6.2.3. Restarting the Service

To restart the running snmpd service, type the following at a shell prompt:
systemctl restart snmpd.service
This will stop the service and start it again in quick succession. To only reload the configuration without stopping the service, run the following command instead:
systemctl reload snmpd.service
This will cause the running snmpd service to reload the configuration.

17.6.3. Configuring Net-SNMP

To change the Net-SNMP Agent Daemon configuration, edit the /etc/snmp/snmpd.conf configuration file. The default snmpd.conf file shipped with Fedora 17 is heavily commented and serves as a good starting point for agent configuration.
This section focuses on two common tasks: setting system information and configuring authentication. For more information about available configuration directives, refer to the snmpd.conf(5) manual page. Additionally, there is a utility in the net-snmp package named snmpconf which can be used to interactively generate a valid agent configuration.
Note that the net-snmp-utils package must be installed in order to use the snmpwalk utility described in this section.

Applying the changes

For any changes to the configuration file to take effect, force the snmpd service to re-read the configuration by running the following command as root:
systemctl reload snmpd.service

17.6.3.1. Setting System Information

Net-SNMP provides some rudimentary system information via the system tree. For example, the following snmpwalk command shows the system tree with a default agent configuration.
~]# snmpwalk -v2c -c public localhost system
SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (99554) 0:16:35.54
SNMPv2-MIB::sysContact.0 = STRING: Root <root@localhost> (configure /etc/snmp/snmp.local.conf)
SNMPv2-MIB::sysName.0 = STRING: localhost.localdomain
SNMPv2-MIB::sysLocation.0 = STRING: Unknown (edit /etc/snmp/snmpd.conf)
By default, the sysName object is set to the hostname. The sysLocation and sysContact objects can be configured in the /etc/snmp/snmpd.conf file by changing the value of the syslocation and syscontact directives, for example:
syslocation Datacenter, Row 3, Rack 2
syscontact UNIX Admin <admin@example.com>
After making changes to the configuration file, reload the configuration and test it by running the snmpwalk command again:
~]# systemct reload snmpd.service
~]# snmpwalk -v2c -c public localhost system
SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (158357) 0:26:23.57
SNMPv2-MIB::sysContact.0 = STRING: UNIX Admin <admin@example.com>
SNMPv2-MIB::sysName.0 = STRING: localhost.localdomain
SNMPv2-MIB::sysLocation.0 = STRING: Datacenter, Row 3, Rack 2

17.6.3.2. Configuring Authentication

The Net-SNMP Agent Daemon supports all three versions of the SNMP protocol. The first two versions (1 and 2c) provide for simple authentication using a community string. This string is a shared secret between the agent and any client utilities. The string is passed in clear text over the network however and is not considered secure. Version 3 of the SNMP protocol supports user authentication and message encryption using a variety of protocols. The Net-SNMP agent also supports tunneling over SSH, TLS authentication with X.509 certificates, and Kerberos authentication.
Configuring SNMP Version 2c Community
To configure an SNMP version 2c community, use either the rocommunity or rwcommunity directive in the /etc/snmp/snmpd.conf configuration file. The format of the directives is the following:
directive community [source [OID]]
… where community is the community string to use, source is an IP address or subnet, and OID is the SNMP tree to provide access to. For example, the following directive provides read-only access to the system tree to a client using the community string redhat on the local machine:
rocommunity redhat 127.0.0.1 .1.3.6.1.2.1.1
To test the configuration, use the snmpwalk command with the -v and -c options.
~]# snmpwalk -v2c -c redhat localhost system
SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (158357) 0:26:23.57
SNMPv2-MIB::sysContact.0 = STRING: UNIX Admin <admin@example.com>
SNMPv2-MIB::sysName.0 = STRING: localhost.localdomain
SNMPv2-MIB::sysLocation.0 = STRING: Datacenter, Row 3, Rack 2
Configuring SNMP Version 3 User
To configure an SNMP version 3 user, use the net-snmp-create-v3-user command. This command adds entries to the /var/lib/net-snmp/snmpd.conf and /etc/snmp/snmpd.conf files which create the user and grant access to the user. Note that the net-snmp-create-v3-user command may only be run when the agent is not running. The following example creates the sysadmin user with the password redhatsnmp:
~]# systemctl stop snmpd.service
~]# net-snmp-create-v3-user
Enter a SNMPv3 user name to create:
admin
Enter authentication pass-phrase:
redhatsnmp
Enter encryption pass-phrase:
  [press return to reuse the authentication pass-phrase]

adding the following line to /var/lib/net-snmp/snmpd.conf:
   createUser admin MD5 "redhatsnmp" DES
adding the following line to /etc/snmp/snmpd.conf:
   rwuser admin
~]# systemctl start snmpd.service
The rwuser directive (or rouser when the -ro command line option is supplied) that net-snmp-create-v3-user adds to /etc/snmp/snmpd.conf has a similar format to the rwcommunity and rocommunity directives:
directive user [noauth|auth|priv] [OID]
… where user is a username and OID is the SNMP tree to provide access to. By default, the Net-SNMP Agent Daemon allows only authenticated requests (the auth option). The noauth option allows you to permit unauthenticated requests, and the priv option enforces the use of encryption. The authpriv option specifies that requests must be authenticated and replies should be encrypted.
For example, the following line grants the user admin read-write access to the entire tree:
rwuser admin authpriv .1
To test the configuration, create a .snmp directory in your user's home directory and a configuration file named snmp.conf in that directory (~/.snmp/snmp.conf) with the following lines:
defVersion 3
defSecurityLevel authPriv
defSecurityName admin
defPassphrase redhatsnmp
The snmpwalk command will now use these authentication settings when querying the agent:
~]$ snmpwalk -v3 localhost system
SNMPv2-MIB::sysDescr.0 = STRING: Linux localhost.localdomain 2.6.32-122.el6.x86_64 #1 SMP Wed Mar 9 23:54:34 EST 2011 x86_64
[output truncated]

17.6.4. Retrieving Performance Data over SNMP

The Net-SNMP Agent in Fedora provides a wide variety of performance information over the SNMP protocol. In addition, the agent can be queried for a listing of the installed RPM packages on the system, a listing of currently running processes on the system, or the network configuration of the system.
This section provides an overview of OIDs related to performance tuning available over SNMP. It assumes that the net-snmp-utils package is installed and that the user is granted access to the SNMP tree as described in Sección 17.6.3.2, “Configuring Authentication”.

17.6.4.1. Hardware Configuration

The Host Resources MIB included with Net-SNMP presents information about the current hardware and software configuration of a host to a client utility. Tabla 17.3, “Available OIDs” summarizes the different OIDs available under that MIB.
Tabla 17.3. Available OIDs
OID Descripción
HOST-RESOURCES-MIB::hrSystem Contains general system information such as uptime, number of users, and number of running processes.
HOST-RESOURCES-MIB::hrStorage Contains data on memory and file system usage.
HOST-RESOURCES-MIB::hrDevices Contains a listing of all processors, network devices, and file systems.
HOST-RESOURCES-MIB::hrSWRun Contains a listing of all running processes.
HOST-RESOURCES-MIB::hrSWRunPerf Contains memory and CPU statistics on the process table from HOST-RESOURCES-MIB::hrSWRun.
HOST-RESOURCES-MIB::hrSWInstalled Contains a listing of the RPM database.

There are also a number of SNMP tables available in the Host Resources MIB which can be used to retrieve a summary of the available information. The following example displays HOST-RESOURCES-MIB::hrFSTable:
~]$ snmptable -Cb localhost HOST-RESOURCES-MIB::hrFSTable
SNMP table: HOST-RESOURCES-MIB::hrFSTable

 Index MountPoint RemoteMountPoint                                Type
    Access Bootable StorageIndex LastFullBackupDate LastPartialBackupDate
     1        "/"               "" HOST-RESOURCES-TYPES::hrFSLinuxExt2
 readWrite     true           31      0-1-1,0:0:0.0         0-1-1,0:0:0.0
     5 "/dev/shm"               ""     HOST-RESOURCES-TYPES::hrFSOther
 readWrite    false           35      0-1-1,0:0:0.0         0-1-1,0:0:0.0
     6    "/boot"               "" HOST-RESOURCES-TYPES::hrFSLinuxExt2
 readWrite    false           36      0-1-1,0:0:0.0         0-1-1,0:0:0.0
For more information about HOST-RESOURCES-MIB, see the /usr/share/snmp/mibs/HOST-RESOURCES-MIB.txt file.

17.6.4.2. CPU and Memory Information

Most system performance data is available in the UCD SNMP MIB. The systemStats OID provides a number of counters around processor usage:
~]$ snmpwalk localhost UCD-SNMP-MIB::systemStats
UCD-SNMP-MIB::ssIndex.0 = INTEGER: 1
UCD-SNMP-MIB::ssErrorName.0 = STRING: systemStats
UCD-SNMP-MIB::ssSwapIn.0 = INTEGER: 0 kB
UCD-SNMP-MIB::ssSwapOut.0 = INTEGER: 0 kB
UCD-SNMP-MIB::ssIOSent.0 = INTEGER: 0 blocks/s
UCD-SNMP-MIB::ssIOReceive.0 = INTEGER: 0 blocks/s
UCD-SNMP-MIB::ssSysInterrupts.0 = INTEGER: 29 interrupts/s
UCD-SNMP-MIB::ssSysContext.0 = INTEGER: 18 switches/s
UCD-SNMP-MIB::ssCpuUser.0 = INTEGER: 0
UCD-SNMP-MIB::ssCpuSystem.0 = INTEGER: 0
UCD-SNMP-MIB::ssCpuIdle.0 = INTEGER: 99
UCD-SNMP-MIB::ssCpuRawUser.0 = Counter32: 2278
UCD-SNMP-MIB::ssCpuRawNice.0 = Counter32: 1395
UCD-SNMP-MIB::ssCpuRawSystem.0 = Counter32: 6826
UCD-SNMP-MIB::ssCpuRawIdle.0 = Counter32: 3383736
UCD-SNMP-MIB::ssCpuRawWait.0 = Counter32: 7629
UCD-SNMP-MIB::ssCpuRawKernel.0 = Counter32: 0
UCD-SNMP-MIB::ssCpuRawInterrupt.0 = Counter32: 434
UCD-SNMP-MIB::ssIORawSent.0 = Counter32: 266770
UCD-SNMP-MIB::ssIORawReceived.0 = Counter32: 427302
UCD-SNMP-MIB::ssRawInterrupts.0 = Counter32: 743442
UCD-SNMP-MIB::ssRawContexts.0 = Counter32: 718557
UCD-SNMP-MIB::ssCpuRawSoftIRQ.0 = Counter32: 128
UCD-SNMP-MIB::ssRawSwapIn.0 = Counter32: 0
UCD-SNMP-MIB::ssRawSwapOut.0 = Counter32: 0
In particular, the ssCpuRawUser, ssCpuRawSystem, ssCpuRawWait, and ssCpuRawIdle OIDs provide counters which are helpful when determining whether a system is spending most of its processor time in kernel space, user space, or I/O. ssRawSwapIn and ssRawSwapOut can be helpful when determining whether a system is suffering from memory exhaustion.
More memory information is available under the UCD-SNMP-MIB::memory OID, which provides similar data to the free command:
~]$ snmpwalk localhost UCD-SNMP-MIB::memory
UCD-SNMP-MIB::memIndex.0 = INTEGER: 0
UCD-SNMP-MIB::memErrorName.0 = STRING: swap
UCD-SNMP-MIB::memTotalSwap.0 = INTEGER: 1023992 kB
UCD-SNMP-MIB::memAvailSwap.0 = INTEGER: 1023992 kB
UCD-SNMP-MIB::memTotalReal.0 = INTEGER: 1021588 kB
UCD-SNMP-MIB::memAvailReal.0 = INTEGER: 634260 kB
UCD-SNMP-MIB::memTotalFree.0 = INTEGER: 1658252 kB
UCD-SNMP-MIB::memMinimumSwap.0 = INTEGER: 16000 kB
UCD-SNMP-MIB::memBuffer.0 = INTEGER: 30760 kB
UCD-SNMP-MIB::memCached.0 = INTEGER: 216200 kB
UCD-SNMP-MIB::memSwapError.0 = INTEGER: noError(0)
UCD-SNMP-MIB::memSwapErrorMsg.0 = STRING:
Load averages are also available in the UCD SNMP MIB. The SNMP table UCD-SNMP-MIB::laTable has a listing of the 1, 5, and 15 minute load averages:
~]$ snmptable localhost UCD-SNMP-MIB::laTable
SNMP table: UCD-SNMP-MIB::laTable

 laIndex laNames laLoad laConfig laLoadInt laLoadFloat laErrorFlag laErrMessage
       1  Load-1   0.00    12.00         0    0.000000     noError
       2  Load-5   0.00    12.00         0    0.000000     noError
       3 Load-15   0.00    12.00         0    0.000000     noError

17.6.4.3. File System and Disk Information

The Host Resources MIB provides information on file system size and usage. Each file system (and also each memory pool) has an entry in the HOST-RESOURCES-MIB::hrStorageTable table:
~]$ snmptable -Cb localhost HOST-RESOURCES-MIB::hrStorageTable
SNMP table: HOST-RESOURCES-MIB::hrStorageTable

 Index                                         Type           Descr
AllocationUnits    Size   Used AllocationFailures
     1           HOST-RESOURCES-TYPES::hrStorageRam Physical memory
1024 Bytes 1021588 388064                  ?
     3 HOST-RESOURCES-TYPES::hrStorageVirtualMemory  Virtual memory
1024 Bytes 2045580 388064                  ?
     6         HOST-RESOURCES-TYPES::hrStorageOther  Memory buffers
1024 Bytes 1021588  31048                  ?
     7         HOST-RESOURCES-TYPES::hrStorageOther   Cached memory
1024 Bytes  216604 216604                  ?
    10 HOST-RESOURCES-TYPES::hrStorageVirtualMemory      Swap space
1024 Bytes 1023992      0                  ?
    31     HOST-RESOURCES-TYPES::hrStorageFixedDisk               /
4096 Bytes 2277614 250391                  ?
    35     HOST-RESOURCES-TYPES::hrStorageFixedDisk        /dev/shm
4096 Bytes  127698      0                  ?
    36     HOST-RESOURCES-TYPES::hrStorageFixedDisk           /boot
1024 Bytes  198337  26694                  ?
The OIDs under HOST-RESOURCES-MIB::hrStorageSize and HOST-RESOURCES-MIB::hrStorageUsed can be used to calculate the remaining capacity of each mounted file system.
I/O data is available both in UCD-SNMP-MIB::systemStats (ssIORawSent.0 and ssIORawRecieved.0) and in UCD-DISKIO-MIB::diskIOTable. The latter provides much more granular data. Under this table are OIDs for diskIONReadX and diskIONWrittenX, which provide counters for the number of bytes read from and written to the block device in question since the system boot:
~]$ snmptable -Cb localhost UCD-DISKIO-MIB::diskIOTable
SNMP table: UCD-DISKIO-MIB::diskIOTable

 Index Device     NRead  NWritten Reads Writes LA1 LA5 LA15    NReadX NWrittenX
...
    25    sda 216886272 139109376 16409   4894   ?   ?    ? 216886272 139109376
    26   sda1   2455552      5120   613      2   ?   ?    ?   2455552      5120
    27   sda2   1486848         0   332      0   ?   ?    ?   1486848         0
    28   sda3 212321280 139104256 15312   4871   ?   ?    ? 212321280 139104256

17.6.4.4. Network Information

Information on network devices is provided by the Interfaces MIB. IF-MIB::ifTable provides an SNMP table with an entry for each interface on the system, the configuration of the interface, and various packet counters for the interface. The following example shows the first few columns of ifTable on a system with two physical network interfaces:
~]$ snmptable -Cb localhost IF-MIB::ifTable
SNMP table: IF-MIB::ifTable

 Index Descr             Type   Mtu    Speed      PhysAddress AdminStatus
     1    lo softwareLoopback 16436 10000000                           up
     2  eth0   ethernetCsmacd  1500        0 52:54:0:c7:69:58          up
     3  eth1   ethernetCsmacd  1500        0 52:54:0:a7:a3:24        down
Network traffic is available under the OIDs IF-MIB::ifOutOctets and IF-MIB::ifInOctets. The following SNMP queries will retrieve network traffic for each of the interfaces on this system:
~]$ snmpwalk localhost IF-MIB::ifDescr
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0
IF-MIB::ifDescr.3 = STRING: eth1
~]$ snmpwalk localhost IF-MIB::ifOutOctets
IF-MIB::ifOutOctets.1 = Counter32: 10060699
IF-MIB::ifOutOctets.2 = Counter32: 650
IF-MIB::ifOutOctets.3 = Counter32: 0
~]$ snmpwalk localhost IF-MIB::ifInOctets
IF-MIB::ifInOctets.1 = Counter32: 10060699
IF-MIB::ifInOctets.2 = Counter32: 78650
IF-MIB::ifInOctets.3 = Counter32: 0

17.6.5. Extending Net-SNMP

The Net-SNMP Agent can be extended to provide application metrics in addition to raw system metrics. This allows for capacity planning as well as performance issue troubleshooting. For example, it may be helpful to know that an email system had a 5-minute load average of 15 while being tested, but it is more helpful to know that the email system has a load average of 15 while processing 80,000 messages a second. When application metrics are available via the same interface as the system metrics, this also allows for the visualization of the impact of different load scenarios on system performance (for example, each additional 10,000 messages increases the load average linearly until 100,000).
A number of the applications that ship with Fedora extend the Net-SNMP Agent to provide application metrics over SNMP. There are several ways to extend the agent for custom applications as well. This section describes extending the agent with shell scripts and Perl plug-ins. It assumes that the net-snmp-utils and net-snmp-perl packages are installed, and that the user is granted access to the SNMP tree as described in Sección 17.6.3.2, “Configuring Authentication”.

17.6.5.1. Extending Net-SNMP with Shell Scripts

The Net-SNMP Agent provides an extension MIB (NET-SNMP-EXTEND-MIB) that can be used to query arbitrary shell scripts. To specify the shell script to run, use the extend directive in the /etc/snmp/snmpd.conf file. Once defined, the Agent will provide the exit code and any output of the command over SNMP. The example below demonstrates this mechanism with a script which determines the number of httpd processes in the process table.

Using the proc directive

The Net-SNMP Agent also provides a built-in mechanism for checking the process table via the proc directive. Refer to the snmpd.conf(5) manual page for more information.
The exit code of the following shell script is the number of httpd processes running on the system at a given point in time:
#!/bin/sh

NUMPIDS=`pgrep httpd | wc -l`

exit $NUMPIDS
To make this script available over SNMP, copy the script to a location on the system path, set the executable bit, and add an extend directive to the /etc/snmp/snmpd.conf file. The format of the extend directive is the following:
extend name prog args
… where name is an identifying string for the extension, prog is the program to run, and args are the arguments to give the program. For instance, if the above shell script is copied to /usr/local/bin/check_apache.sh, the following directive will add the script to the SNMP tree:
extend httpd_pids /bin/sh /usr/local/bin/check_apache.sh
The script can then be queried at NET-SNMP-EXTEND-MIB::nsExtendObjects:
~]$ snmpwalk localhost NET-SNMP-EXTEND-MIB::nsExtendObjects
NET-SNMP-EXTEND-MIB::nsExtendNumEntries.0 = INTEGER: 1
NET-SNMP-EXTEND-MIB::nsExtendCommand."httpd_pids" = STRING: /bin/sh
NET-SNMP-EXTEND-MIB::nsExtendArgs."httpd_pids" = STRING: /usr/local/bin/check_apache.sh
NET-SNMP-EXTEND-MIB::nsExtendInput."httpd_pids" = STRING:
NET-SNMP-EXTEND-MIB::nsExtendCacheTime."httpd_pids" = INTEGER: 5
NET-SNMP-EXTEND-MIB::nsExtendExecType."httpd_pids" = INTEGER: exec(1)
NET-SNMP-EXTEND-MIB::nsExtendRunType."httpd_pids" = INTEGER: run-on-read(1)
NET-SNMP-EXTEND-MIB::nsExtendStorage."httpd_pids" = INTEGER: permanent(4)
NET-SNMP-EXTEND-MIB::nsExtendStatus."httpd_pids" = INTEGER: active(1)
NET-SNMP-EXTEND-MIB::nsExtendOutput1Line."httpd_pids" = STRING:
NET-SNMP-EXTEND-MIB::nsExtendOutputFull."httpd_pids" = STRING:
NET-SNMP-EXTEND-MIB::nsExtendOutNumLines."httpd_pids" = INTEGER: 1
NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids" = INTEGER: 8
NET-SNMP-EXTEND-MIB::nsExtendOutLine."httpd_pids".1 = STRING:
Note that the exit code (8 in this example) is provided as an INTEGER type and any output is provided as a STRING type. To expose multiple metrics as integers, supply different arguments to the script using the extend directive. For example, the following shell script can be used to determine the number of processes matching an arbitrary string, and will also output a text string giving the number of processes:
#!/bin/sh

PATTERN=$1
NUMPIDS=`pgrep $PATTERN | wc -l`

echo "There are $NUMPIDS $PATTERN processes."
exit $NUMPIDS
The following /etc/snmp/snmpd.conf directives will give both the number of httpd PIDs as well as the number of snmpd PIDs when the above script is copied to /usr/local/bin/check_proc.sh:
extend httpd_pids /bin/sh /usr/local/bin/check_proc.sh httpd
extend snmpd_pids /bin/sh /usr/local/bin/check_proc.sh snmpd
The following example shows the output of an snmpwalk of the nsExtendObjects OID:
~]$ snmpwalk localhost NET-SNMP-EXTEND-MIB::nsExtendObjects
NET-SNMP-EXTEND-MIB::nsExtendNumEntries.0 = INTEGER: 2
NET-SNMP-EXTEND-MIB::nsExtendCommand."httpd_pids" = STRING: /bin/sh
NET-SNMP-EXTEND-MIB::nsExtendCommand."snmpd_pids" = STRING: /bin/sh
NET-SNMP-EXTEND-MIB::nsExtendArgs."httpd_pids" = STRING: /usr/local/bin/check_proc.sh httpd
NET-SNMP-EXTEND-MIB::nsExtendArgs."snmpd_pids" = STRING: /usr/local/bin/check_proc.sh snmpd
NET-SNMP-EXTEND-MIB::nsExtendInput."httpd_pids" = STRING:
NET-SNMP-EXTEND-MIB::nsExtendInput."snmpd_pids" = STRING:
...
NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids" = INTEGER: 8
NET-SNMP-EXTEND-MIB::nsExtendResult."snmpd_pids" = INTEGER: 1
NET-SNMP-EXTEND-MIB::nsExtendOutLine."httpd_pids".1 = STRING: There are 8 httpd processes.
NET-SNMP-EXTEND-MIB::nsExtendOutLine."snmpd_pids".1 = STRING: There are 1 snmpd processes.

Integer exit codes are limited

Integer exit codes are limited to a range of 0–255. For values that are likely to exceed 256, either use the standard output of the script (which will be typed as a string) or a different method of extending the agent.
This last example shows a query for the free memory of the system and the number of httpd processes. This query could be used during a performance test to determine the impact of the number of processes on memory pressure:
~]$ snmpget localhost \
    'NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids"' \
    UCD-SNMP-MIB::memAvailReal.0
NET-SNMP-EXTEND-MIB::nsExtendResult."httpd_pids" = INTEGER: 8
UCD-SNMP-MIB::memAvailReal.0 = INTEGER: 799664 kB

17.6.5.2. Extending Net-SNMP with Perl

Executing shell scripts using the extend directive is a fairly limited method for exposing custom application metrics over SNMP. The Net-SNMP Agent also provides an embedded Perl interface for exposing custom objects. The net-snmp-perl package provides the NetSNMP::agent Perl module that is used to write embedded Perl plug-ins on Fedora.
The NetSNMP::agent Perl module provides an agent object which is used to handle requests for a part of the agent's OID tree. The agent object's constructor has options for running the agent as a sub-agent of snmpd or a standalone agent. No arguments are necessary to create an embedded agent:
use NetSNMP::agent (':all');

my $agent = new NetSNMP::agent();
The agent object has a register method which is used to register a callback function with a particular OID. The register function takes a name, OID, and pointer to the callback function. The following example will register a callback function named hello_handler with the SNMP Agent which will handle requests under the OID .1.3.6.1.4.1.8072.9999.9999:
$agent->register("hello_world", ".1.3.6.1.4.1.8072.9999.9999",
                 \&hello_handler);

Obtaining a root OID

The OID .1.3.6.1.4.1.8072.9999.9999 (NET-SNMP-MIB::netSnmpPlaypen) is typically used for demonstration purposes only. If your organization does not already have a root OID, you can obtain one by contacting your Name Registration Authority (ANSI in the United States).
The handler function will be called with four parameters, HANDLER, REGISTRATION_INFO, REQUEST_INFO, and REQUESTS. The REQUESTS parameter contains a list of requests in the current call and should be iterated over and populated with data. The request objects in the list have get and set methods which allow for manipulating the OID and value of the request. For example, the following call will set the value of a request object to the string hello world:
$request->setValue(ASN_OCTET_STR, "hello world");
The handler function should respond to two types of SNMP requests: the GET request and the GETNEXT request. The type of request is determined by calling the getMode method on the request_info object passed as the third parameter to the handler function. If the request is a GET request, the caller will expect the handler to set the value of the request object, depending on the OID of the request. If the request is a GETNEXT request, the caller will also expect the handler to set the OID of the request to the next available OID in the tree. This is illustrated in the following code example:
my $request;
my $string_value = "hello world";
my $integer_value = "8675309";

for($request = $requests; $request; $request = $request->next()) {
  my $oid = $request->getOID();
  if ($request_info->getMode() == MODE_GET) {
    if ($oid == new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.0")) {
      $request->setValue(ASN_OCTET_STR, $string_value);
    }
    elsif ($oid == new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.1")) {
      $request->setValue(ASN_INTEGER, $integer_value);
    }
  } elsif ($request_info->getMode() == MODE_GETNEXT) {
    if ($oid == new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.0")) {
      $request->setOID(".1.3.6.1.4.1.8072.9999.9999.1.1");
      $request->setValue(ASN_INTEGER, $integer_value);
    }
    elsif ($oid < new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.0")) {
      $request->setOID(".1.3.6.1.4.1.8072.9999.9999.1.0");
      $request->setValue(ASN_OCTET_STR, $string_value);
    }
  }
}
When getMode returns MODE_GET, the handler analyzes the value of the getOID call on the request object. The value of the request is set to either string_value if the OID ends in .1.0, or set to integer_value if the OID ends in .1.1. If the getMode returns MODE_GETNEXT, the handler determines whether the OID of the request is .1.0, and then sets the OID and value for .1.1. If the request is higher on the tree than .1.0, the OID and value for .1.0 is set. This in effect returns the next value in the tree so that a program like snmpwalk can traverse the tree without prior knowledge of the structure.
The type of the variable is set using constants from NetSNMP::ASN. See the perldoc for NetSNMP::ASN for a full list of available constants.
The entire code listing for this example Perl plug-in is as follows:
#!/usr/bin/perl

use NetSNMP::agent (':all');
use NetSNMP::ASN qw(ASN_OCTET_STR ASN_INTEGER);

sub hello_handler {
  my ($handler, $registration_info, $request_info, $requests) = @_;
  my $request;
  my $string_value = "hello world";
  my $integer_value = "8675309";

  for($request = $requests; $request; $request = $request->next()) {
    my $oid = $request->getOID();
    if ($request_info->getMode() == MODE_GET) {
      if ($oid == new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.0")) {
        $request->setValue(ASN_OCTET_STR, $string_value);
      }
      elsif ($oid == new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.1")) {
        $request->setValue(ASN_INTEGER, $integer_value);
      }
    } elsif ($request_info->getMode() == MODE_GETNEXT) {
      if ($oid == new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.0")) {
        $request->setOID(".1.3.6.1.4.1.8072.9999.9999.1.1");
        $request->setValue(ASN_INTEGER, $integer_value);
      }
      elsif ($oid < new NetSNMP::OID(".1.3.6.1.4.1.8072.9999.9999.1.0")) {
        $request->setOID(".1.3.6.1.4.1.8072.9999.9999.1.0");
        $request->setValue(ASN_OCTET_STR, $string_value);
      }
    }
  }
}

my $agent = new NetSNMP::agent();
$agent->register("hello_world", ".1.3.6.1.4.1.8072.9999.9999",
                 \&hello_handler);
To test the plug-in, copy the above program to /usr/share/snmp/hello_world.pl and add the following line to the /etc/snmp/snmpd.conf configuration file:
perl do "/usr/share/snmp/hello_world.pl"
The SNMP Agent Daemon will need to be restarted to load the new Perl plug-in. Once it has been restarted, an snmpwalk should return the new data:
~]$ snmpwalk localhost NET-SNMP-MIB::netSnmpPlaypen
NET-SNMP-MIB::netSnmpPlaypen.1.0 = STRING: "hello world"
NET-SNMP-MIB::netSnmpPlaypen.1.1 = INTEGER: 8675309
The snmpget should also be used to exercise the other mode of the handler:
~]$ snmpget localhost \
    NET-SNMP-MIB::netSnmpPlaypen.1.0 \
    NET-SNMP-MIB::netSnmpPlaypen.1.1
NET-SNMP-MIB::netSnmpPlaypen.1.0 = STRING: "hello world"
NET-SNMP-MIB::netSnmpPlaypen.1.1 = INTEGER: 8675309

17.7. Recursos adicionales

Para aprender más sobre cómo obtener información del sistema, consulte los siguientes recursos.

17.7.1. Documentación instalada

  • ps(1) — The manual page for the ps command.
  • top(1) — The manual page for the top command.
  • free(1) — The manual page for the free command.
  • df(1) — The manual page for the df command.
  • du(1) — The manual page for the du command.
  • lspci(8) — The manual page for the lspci command.
  • snmpd(8) — The manual page for the snmpd service.
  • snmpd.conf(5) — The manual page for the /etc/snmp/snmpd.conf file containing full documentation of available configuration directives.

Capítulo 18. Viewing and Managing Log Files

Los Archivos de registro (o archivos de log) son archivos que contienen mensajes sobre el sistema, incluyendo el kernel, los servicios y las aplicaciones que se ejecutan en dicho sistema. Existen diferentes tipos de archivos de log dependiendo de la información. Por ejemplo, existe un archivo de log del sistema, un archivo de log para los mensajes de seguridad y un archivo de log para las tareas cron.
Log files can be very useful when trying to troubleshoot a problem with the system such as trying to load a kernel driver or when looking for unauthorized login attempts to the system. This chapter discusses where to find log files, how to view log files, and what to look for in log files.
Some log files are controlled by a daemon called rsyslogd. A list of log files maintained by rsyslogd can be found in the /etc/rsyslog.conf configuration file.
rsyslog is an enhanced, multi-threaded syslog daemon which replaced the sysklogd daemon. rsyslog supports the same functionality as sysklogd and extends it with enhanced filtering, encryption protected relaying of messages, various configuration options, or support for transportation via the TCP or UDP protocols. Note that rsyslog is compatible with sysklogd.

18.1. Configuring rsyslog

The main configuration file for rsyslog is /etc/rsyslog.conf. It consists of global directives, rules or comments (any empty lines or any text following a hash sign (#)). Both, global directives and rules are extensively described in the sections below.

18.1.1. Global Directives

Global directives specify configuration options that apply to the rsyslogd daemon. They usually specify a value for a specific pre-defined variable that affects the behavior of the rsyslogd daemon or a rule that follows. All of the global directives must start with a dollar sign ($). Only one directive can be specified per line. The following is an example of a global directive that specifies the maximum size of the syslog message queue:
$MainMsgQueueSize 50000
The default size defined for this directive (10,000 messages) can be overridden by specifying a different value (as shown in the example above).
You may define multiple directives in your /etc/rsyslog.conf configuration file. A directive affects the behavior of all configuration options until another occurrence of that same directive is detected.
A comprehensive list of all available configuration directives and their detailed description can be found in /usr/share/doc/rsyslog-<version-number>/rsyslog_conf_global.html.

18.1.2. Modules

Due to its modular design, rsyslog offers a variety of modules which provide dynamic functionality. Note that modules can be written by third parties. Most modules provide additional inputs (see Input Modules below) or outputs (see Output Modules below). Other modules provide special functionality specific to each module. The modules may provide additional configuration directives that become available after a module is loaded. To load a module, use the following syntax:
$ModLoad <MODULE> 
where $ModLoad is the global directive that loads the specified module and <MODULE> represents your desired module. For example, if you want to load the Text File Input Module (imfile — enables rsyslog to convert any standard text files into syslog messages), specify the following line in your /etc/rsyslog.conf configuration file:
$ModLoad imfile
rsyslog offers a number of modules which are split into these main categories:
  • Input Modules — Input modules gather messages from various sources. The name of an input module always starts with the im prefix, such as imfile, imrelp, etc.
  • Output Modules — Output modules provide a facility to store messages into various targets such as sending them across network, storing them in a database or encrypting them. The name of an output module always starts with the om prefix, such as omsnmp, omrelp, etc.
  • Filter Modules — Filter modules provide the ability to filter messages according to specified rules. The name of a filter module always starts with the fm prefix.
  • Parser Modules — Parser modules use the message parsers to parse message content of any received messages. The name of a parser module always starts with the pm prefix, such as pmrfc5424, pmrfc3164, etc.
  • Message Modification Modules — Message modification modules change the content of a syslog message. The message modification modules only differ in their implementation from the output and filter modules but share the same interface.
  • String Generator Modules — String generator modules generate strings based on the message content and strongly cooperate with the template feature provided by rsyslog. For more information on templates, refer to Sección 18.1.3.3, “Templates”. The name of a string generator module always starts with the sm prefix, such as smfile, smtradfile, etc.
  • Library Modules — Library modules generally provide functionality for other loadable modules. These modules are loaded automatically by rsyslog when needed and cannot be configured by the user.
A comprehensive list of all available modules and their detailed description can be found at http://www.rsyslog.com/doc/rsyslog_conf_modules.html

Make sure you use trustworthy modules only

Note that when rsyslog loads any modules, it provides them with access to some of its functions and data. This poses a possible security threat. To minimize security risks, use trustworthy modules only.

18.1.3. Rules

A rule is specified by a filter part, which selects a subset of syslog messages, and an action part, which specifies what to do with the selected messages. To define a rule in your /etc/rsyslog.conf configuration file, define both, a filter and an action, on one line and separate them with one or more spaces or tabs. For more information on filters, refer to Sección 18.1.3.1, “Filter Conditions” and for information on actions, refer to Sección 18.1.3.2, “Actions”.

18.1.3.1. Filter Conditions

rsyslog offers various ways how to filter syslog messages according to various properties. This sections sums up the most used filter conditions.
Facility/Priority-based filters
The most used and well-known way to filter syslog messages is to use the facility/priority-based filters which filter syslog messages based on two conditions: facility and priority. To create a selector, use the following syntax:
<FACILITY>.<PRIORITY>
where:
  • <FACILITY> specifies the subsystem that produces a specific syslog message. For example, the mail subsystem handles all mail related syslog messages. <FACILITY> can be represented by one of these keywords: auth, authpriv, cron, daemon, kern, lpr, mail, news, syslog, user, uucp, and local0 through local7.
  • <PRIORITY> specifies a priority of a syslog message. <PRIORITY> can be represented by one of these keywords (listed in an ascending order): debug, info, notice, warning, err, crit, alert, and emerg.
    By preceding any priority with an equal sign (=), you specify that only syslog messages with that priority will be selected. All other priorities will be ignored. Conversely, preceding a priority with an exclamation mark (!) selects all syslog messages but those with the defined priority. By not using either of these two extensions, you specify a selection of syslog messages with the defined or higher priority.
In addition to the keywords specified above, you may also use an asterisk (*) to define all facilities or priorities (depending on where you place the asterisk, before or after the dot). Specifying the keyword none serves for facilities with no given priorities.
To define multiple facilities and priorities, simply separate them with a comma (,). To define multiple filters on one line, separate them with a semi-colon (;).
The following are a few examples of simple facility/priority-based filters:
kern.*    # Selects all kernel syslog messages with any priority
mail.crit    # Selects all mail syslog messages with priority crit and higher.
cron.!info,!debug    # Selects all cron syslog messages except those with the info or debug priority.
Property-based filters
Property-based filters let you filter syslog messages by any property, such as timegenerated or syslogtag. For more information on properties, refer to Sección 18.1.3.3.2, “Properties”. Each of the properties specified in the filters lets you compare it to a specific value using one of the compare-operations listed in Tabla 18.1, “Property-based compare-operations”.
Tabla 18.1. Property-based compare-operations
Compare-operation Descripción
contains Checks whether the provided string matches any part of the text provided by the property.
isequal Compares the provided string against all of the text provided by the property.
startswith Checks whether the provided string matches a prefix of the text provided by the property.
regex Compares the provided POSIX BRE (Basic Regular Expression) regular expression against the text provided by the property.
ereregex Compares the provided POSIX ERE (Extended Regular Expression) regular expression against the text provided by the property.

To define a property-based filter, use the following syntax:
:<PROPERTY>, [!]<COMPARE_OPERATION>, "<STRING>"
where:
  • The <PROPERTY> attribute specifies the desired property (for example, timegenerated, hostname, etc.).
  • The optional exclamation point (!) negates the output of the compare-operation (if prefixing the compare-operation).
  • The <COMPARE_OPERATION> attribute specifies one of the compare-operations listed in Tabla 18.1, “Property-based compare-operations”.
  • The <STRING> attribute specifies the value that the text provided by the property is compared to. To escape certain character (for example a quotation mark (")), use the backslash character (\).
The following are few examples of property-based filters:
  • The following filter selects syslog messages which contain the string error in their message text:
    :msg, contains, "error"
  • The following filter selects syslog messages received from the hostname host1:
    :hostname, isequal, "host1"
  • The following filter selects syslog messages which do not contain any mention of the words fatal and error with any or no text between them (for example, fatal lib error):
    :msg, !regex, "fatal .* error"
Expression-based filters
Expression-based filters select syslog messages according to defined arithmetic, boolean or string operations. Expression-based filters use rsyslog's own scripting language. The syntax of this language is defined in /usr/share/doc/rsyslog-<version-number>/rscript_abnf.html along with examples of various expression-based filters.
To define an expression-based filter, use the following syntax:
if <EXPRESSION> then <ACTION>
where:
  • The <EXPRESSION> attribute represents an expression to be evaluated, for example: $msg startswith 'DEVNAME' or $syslogfacility-text == 'local0'.
  • The <ACTION> attribute represents an action to be performed if the expression returns the value true.

Define an expression-based filter on a single line

When defining an expression-based filter, it must be defined on a single line.

Do not use regular expressions

Regular expressions are currently not supported in expression-based filters.
BSD-style blocks
rsyslog supports BSD-style blocks inside the /etc/rsyslog.conf configuration file. Each block consists of rules which are preceded with a program or hostname label. Use the '!<PROGRAM>' or '-<PROGRAM>' labels to include or exclude programs, respectively. Use the '+<HOSTNAME> ' or '-<HOSTNAME> ' labels include or exclude hostnames, respectively.
Ejemplo 18.1, “BSD-style block” shows a BSD-style block that saves all messages generated by yum to a file.
Ejemplo 18.1. BSD-style block
!yum
*.*      /var/log/named.log

18.1.3.2. Actions

Actions specify what is to be done with the messages filtered out by an already-defined selector. The following are some of the actions you can define in your rule:
Saving syslog messages to log files
The majority of actions specify to which log file a syslog message is saved. This is done by specifying a file path after your already-defined selector. The following is a rule comprised of a selector that selects all cron syslog messages and an action that saves them into the /var/log/cron.log log file:
cron.* /var/log/cron.log
Use a dash mark (-) as a prefix of the file path you specified if you want to omit syncing the desired log file after every syslog message is generated.
Your specified file path can be either static or dynamic. Static files are represented by a simple file path as was shown in the example above. Dynamic files are represented by a template and a question mark (?) prefix. For more information on templates, refer to Sección 18.1.3.3.1, “Generating dynamic file names”.
If the file you specified is an existing tty or /dev/console device, syslog messages are sent to standard output (using special tty-handling) or your console (using special /dev/console-handling) when using the X Window System, respectively.
Sending syslog messages over the network
rsyslog allows you to send and receive syslog messages over the network. This feature allows to administer syslog messages of multiple hosts on one machine. To forward syslog messages to a remote machine, use the following syntax:
@[(<OPTION>)]<HOST>:[<PORT>]
where:
  • The at sign (@) indicates that the syslog messages are forwarded to a host using the UDP protocol. To use the TCP protocol, use two at signs with no space between them (@@).
  • The <OPTION> attribute can be replaced with an option such as z<NUMBER> . This option enables zlib compression for syslog messages; the <NUMBER> attribute specifies the level of compression. To define multiple options, simply separate each one of them with a comma (,).
  • The <HOST> attribute specifies the host which receives the selected syslog messages.
  • The <PORT> attribute specifies the host machine's port.
When specifying an IPv6 address as the host, enclose the address in square brackets ([, ]).
The following are some examples of actions that forward syslog messages over the network (note that all actions are preceded with a selector that selects all messages with any priority):
*.* @192.168.0.1    # Forwards messages to 192.168.0.1 via the UDP protocol
*.* @@example.com:18    # Forwards messages to "example.com" using port 18 and the TCP protocol
*.* @(z9)[2001::1]    # Compresses messages with zlib (level 9 compression)
                      # and forwards them to 2001::1 using the UDP protocol
Output channels
Output channels are primarily used for log file rotation (for more info on log file rotation, refer to Sección 18.2.1, “Configuring logrotate”), that is, to specify the maximum size a log file can grow to. To define an output channel, use the following syntax:
$outchannel <NAME>, <FILE_NAME>, <MAX_SIZE>, <ACTION>
where:
  • The <NAME> attribute specifies the name of the output channel.
  • The <FILE_NAME> attribute specifies the name of the output file.
  • The <MAX_SIZE> attribute represents the maximum size the specified file (in <FILE_NAME>) can grow to. This value is specified in bytes.
  • The <ACTION> attribute specifies the action that is taken when the maximum size, defined in <MAX_SIZE>, is hit.
Ejemplo 18.2, “Output channel log rotation” shows a simple log rotation through the use of an output channel. First, the output channel is defined via the $outchannel directive and then used in a rule which selects every syslog message with any priority and executes the previously-defined output channel on the acquired syslog messages. Once the limit (in the example 100 MB) is hit, the /home/joe/log_rotation_script is executed. This script can contain anything from moving the file into a different folder, editing specific content out of it, or simply removing it.
Ejemplo 18.2. Output channel log rotation
$outchannel log_rotation,/var/log/test_log.log, 104857600, /home/joe/log_rotation_script

*.* $log_rotation

Support for output channels is to be removed in the future

Output channels are currently supported by rsyslog, however, they are planned to be removed in the nearby future.
Sending syslog messages to specific users
rsyslog can send syslog messages to specific users by simply specifying a username of the user you wish to send the messages to. To specify more than one user, separate each username with a comma (,). To send messages to every user that is currently logged on, use an asterisk (*).
Executing a program
rsyslog lets you execute a program for selected syslog messages and uses the system() call to execute the program in shell. To specify a program to be executed, prefix it with a caret character (^). Consequently, specify a template that formats the received message and passes it to the specified executable as a one line parameter (for more information on templates, refer to Sección 18.1.3.3, “Templates”). In the following example, any syslog message with any priority is selected, formatted with the template template and passed as a parameter to the test-program program, which is then executed with the provided parameter:
*.* ^test-program;template

Be careful when using the shell execute action

When accepting messages from any host, and using the shell execute action, you may be vulnerable to command injection. An attacker may try to inject and execute commands specified by the attacker in the program you specified (in your action) to be executed. To avoid any possible security threats, thoroughly consider the use of the shell execute action.
Inputting syslog messages in a database
Selected syslog messages can be directly written into a database table using the database writer action. The database writer uses the following syntax:
:<PLUGIN>:<DB_HOST>,<DB_NAME>,<DB_USER>,<DB_PASSWORD>;[<TEMPLATE>]
where:
  • The <PLUGIN> calls the specified plug-in that handles the database writing (for example, the ommysql plug-in).
  • The <DB_HOST> attribute specifies the database hostname.
  • The <DB_NAME> attribute specifies the name of the database.
  • The <DB_USER> attribute specifies the database user.
  • The <DB_PASSWORD> attribute specifies the password used with the aforementioned database user.
  • The <TEMPLATE> attribute specifies an optional use of a template that modifies the syslog message. For more information on templates, refer to Sección 18.1.3.3, “Templates”.

Using MySQL and PostgreSQL

Currently, rsyslog provides support for MySQL (for more information, refer to /usr/share/doc/rsyslog-<version-number>/rsyslog_mysql.html) and PostgreSQL databases only. In order to use the MySQL and PostgreSQL database writer functionality, install the rsyslog-mysql and rsyslog-pgsql packages installed, respectively. Also, make sure you load the appropriate modules in your /etc/rsyslog.conf configuration file:
$ModLoad ommysql    # Output module for MySQL support
$ModLoad ompgsql    # Output module for PostgreSQL support
For more information on rsyslog modules, refer to Sección 18.1.2, “Modules”.
Alternatively, you may use a generic database interface provided by the omlibdb module. However, this module is currently not compiled.
Discarding syslog messages
To discard your selected messages, use the tilde character (~). The following rule discards any cron syslog messages:
cron.* ~
For each selector, you are allowed to specify multiple actions. To specify multiple actions for one selector, write each action on a separate line and precede it with an ampersand character (&). Only the first action is allowed to have a selector specified on its line. The following is an example of a rule with multiple actions:
kern.=crit joe
& ^test-program;temp
& @192.168.0.1
In the example above, all kernel syslog messages with the critical priority (crit) are send to user joe, processed by the template temp and passed on to the test-program executable, and forwarded to 192.168.0.1 via the UDP protocol.
Specifying multiple actions improves the overall performance of the desired outcome since the specified selector has to be evaluated only once.
Note that any action can be followed by a template that formats the message. To specify a template, suffix an action with a semicolon (;) and specify the name of the template.

Using templates

A template must be defined before it is used in an action, otherwise, it is ignored.
For more information on templates, refer to Sección 18.1.3.3, “Templates”.

18.1.3.3. Templates

Any output that is generated by rsyslog can be modified and formatted according to your needs through the use of templates. To create a template use the following syntax:
$template <TEMPLATE_NAME>,"text %<PROPERTY>% more text", [<OPTION>]
where:
  • $template is the template directive that indicates that the text following it, defines a template.
  • <TEMPLATE_NAME> is the name of the template. Use this name to refer to the template.
  • Anything between the two quotation marks ("") is the actual template text. Within this text, you are allowed to escape characters in order to use their functionality, such as \n for new line or \r for carriage return. Other characters, such as % or ", have to be escaped in case you want to those characters literally.
    The text specified within two percent signs (%) specifies a property that is consequently replaced with the property's actual value. For more information on properties, refer to Sección 18.1.3.3.2, “Properties”
  • The <OPTION> attribute specifies any options that modify the template functionality. Do not mistake these for property options, which are defined inside the template text (between ""). The currently supported template options are sql and stdsql used for formatting the text as an SQL query.

    The sql and stdsql options

    Note that the database writer (for more information, refer to section Inputting syslog messages in a database in Sección 18.1.3.2, “Actions”) checks whether the sql and stdsql options are specified in the template. If they are not, the database writer does not perform any action. This is to prevent any possible security threats, such as SQL injection.
18.1.3.3.1. Generating dynamic file names
Templates can be used to generate dynamic file names. By specifying a property as a part of the file path, a new file will be created for each unique property. For example, use the timegenerated property to generate a unique file name for each syslog message:
$template DynamicFile,"/var/log/test_logs/%timegenerated%-test.log"
Keep in mind that the $template directive only specifies the template. You must use it inside a rule for it to take effect:
*.* ?DynamicFile
18.1.3.3.2. Properties
Properties defined inside a template (within two percent signs (%)) allow you to access various contents of a syslog message through the use of a property replacer. To define a property inside a template (between the two quotation marks ("")), use the following syntax:
%<PROPERTY_NAME>[:<FROM_CHAR>:<TO_CHAR>:<OPTION>]%
where:
  • The <PROPERTY_NAME> attribute specifies the name of a property. A comprehensible list of all available properties and their detailed description can be found in /usr/share/doc/rsyslog-<version-number>/property_replacer.html under the section Available Properties.
  • <FROM_CHAR> and <TO_CHAR> attributes denote a range of characters that the specified property will act upon. Alternatively, regular expressions can be used to specify a range of characters. To do so, specify the letter R as the <FROM_CHAR> attribute and specify your desired regular expression as the <TO_CHAR> attribute.
  • The <OPTION> attribute specifies any property options. A comprehensible list of all available properties and their detailed description can be found in /usr/share/doc/rsyslog-<version-number>/property_replacer.html under the section Property Options.
The following are some examples of simple properties:
  • The following property simply obtains the whole message text of a syslog message:
    %msg%
  • The following property obtains the first two characters of the message text of a syslog message:
    %msg:1:2%
  • The following property obtains the whole message text of a syslog message and drops its last line feed character:
    %msg:::drop-last-lf%
  • The following property obtains the first 10 characters of the timestamp that is generated when the syslog message is received and formats it according to the RFC 3999 date standard.
    %timegenerated:1:10:date-rfc3339%
18.1.3.3.3. Template Examples
This section presents few examples of rsyslog templates.
Ejemplo 18.3, “A verbose syslog message template” shows a template that formats a syslog message so that it outputs the message's severity, facility, the timestamp of when the message was received, the hostname, the message tag, the message text, and ends with a new line.
Ejemplo 18.3. A verbose syslog message template
$template verbose,"%syslogseverity%,%syslogfacility%,%timegenerated%,%HOSTNAME%,%syslogtag%,%msg%\n"

Ejemplo 18.4, “A wall message template” shows a template that resembles a traditional wall message (a message that is send to every user that is logged in and has their mesg(1) permission set to yes). This template outputs the message text, along with a hostname, message tag and a timestamp, on a new line (using \r and \n) and rings the bell (using \7).
Ejemplo 18.4. A wall message template
$template wallmsg,"\r\n\7Message from syslogd@%HOSTNAME% at %timegenerated% ...\r\n %syslogtag% %msg%\n\r"

Ejemplo 18.5, “A database formatted message template” shows a template that formats a syslog message so that it can be used as a database query. Notice the use of the sql option at the end of the template specified as the template option. It tells the database writer to format the message as an MySQL SQL query.
Ejemplo 18.5. A database formatted message template
$template dbFormat,"insert into SystemEvents (Message, Facility,FromHost, Priority, DeviceReportedTime, ReceivedAt, InfoUnitID, SysLogTag) values ('%msg%', %syslogfacility%, '%HOSTNAME%',%syslogpriority%, '%timereported:::date-mysql%', '%timegenerated:::date-mysql%', %iut%, '%syslogtag%')",sql

rsyslog also contains a set of predefined templates identified by the RSYSLOG_ prefix. It is advisable to not create a template using this prefix to avoid any conflicts. The following list shows these predefined templates along with their definitions.
RSYSLOG_DebugFormat
"Debug line with all properties:\nFROMHOST: '%FROMHOST%', fromhost-ip: '%fromhost-ip%', HOSTNAME: '%HOSTNAME%', PRI: %PRI%,\nsyslogtag '%syslogtag%', programname: '%programname%', APP-NAME: '%APP-NAME%', PROCID: '%PROCID%', MSGID: '%MSGID%',\nTIMESTAMP: '%TIMESTAMP%', STRUCTURED-DATA: '%STRUCTURED-DATA%',\nmsg: '%msg%'\nescaped msg: '%msg:::drop-cc%'\nrawmsg: '%rawmsg%'\n\n\"
RSYSLOG_SyslogProtocol23Format
"<%PRI%>1 %TIMESTAMP:::date-rfc3339% %HOSTNAME% %APP-NAME% %PROCID% %MSGID% %STRUCTURED-DATA% %msg%\n\"
RSYSLOG_FileFormat
"%TIMESTAMP:::date-rfc3339% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1st-sp%%msg:::drop-last-lf%\n\"
RSYSLOG_TraditionalFileFormat
"%TIMESTAMP% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1st-sp%%msg:::drop-last-lf%\n\"
RSYSLOG_ForwardFormat
"<%PRI%>%TIMESTAMP:::date-rfc3339% %HOSTNAME% %syslogtag:1:32%%msg:::sp-if-no-1st-sp%%msg%\"
RSYSLOG_TraditionalForwardFormat
"<%PRI%>%TIMESTAMP% %HOSTNAME% %syslogtag:1:32%%msg:::sp-if-no-1st-sp%%msg%\"

18.1.4. rsyslog Command Line Configuration

Some of rsyslog's functionality can be configured through the command line options, as sysklogd's can. Note that as of version 3 of rsyslog, this method was deprecated. To enable some of these option, you must specify the compatibility mode rsyslog should run in. However, configuring rsyslog through the command line options should be avoided.
To specify the compatibility mode rsyslog should run in, use the -c option. When no parameter is specified, rsyslog tries to be compatible with sysklogd. This is partially achieved by activating configuration directives that modify your configuration accordingly. Therefore, it is advisable to supply this option with a number that matches the major version of rsyslog that is in use and update your /etc/rsyslog.conf configuration file accordingly. If you want to, for example, use sysklogd options (which were deprecated in version 3 of rsyslog), you can specify so by executing the following command:
~]# rsyslogd -c 2
Options that are passed to the rsyslogd daemon, including the backward compatibility mode, can be specified in the /etc/sysconfig/rsyslog configuration file.
For more information on various rsyslogd options, refer to man rsyslogd.

18.2. Localizar archivos de registro

Most log files are located in the /var/log/ directory. Some applications such as httpd and samba have a directory within /var/log/ for their log files.
You may notice multiple files in the /var/log/ directory with numbers after them (for example, cron-20100906). These numbers represent a timestamp that has been added to a rotated log file. Log files are rotated so their file sizes do not become too large. The logrotate package contains a cron task that automatically rotates log files according to the /etc/logrotate.conf configuration file and the configuration files in the /etc/logrotate.d/ directory.

18.2.1. Configuring logrotate

The following is a sample /etc/logrotate.conf configuration file:
# rotate log files weekly
weekly
# keep 4 weeks worth of backlogs
rotate 4
# uncomment this if you want your log files compressed
compress
All of the lines in the sample configuration file define global options that apply to every log file. In our example, log files are rotated weekly, rotated log files are kept for the duration of 4 weeks, and all rotated log files are compressed by gzip into the .gz format. Any lines that begin with a hash sign (#) are comments and are not processed
You may define configuration options for a specific log file and place it under the global options. However, it is advisable to create a separate configuration file for any specific log file in the /etc/logrotate.d/ directory and define any configuration options there.
The following is an example of a configuration file placed in the /etc/logrotate.d/ directory:
/var/log/messages {
    rotate 5
    weekly
    postrotate
    /usr/bin/killall -HUP syslogd
    endscript
}
The configuration options in this file are specific for the /var/log/messages log file only. The settings specified here override the global settings where possible. Thus the rotated /var/log/messages log file will be kept for five weeks instead of four weeks as was defined in the global options.
The following is a list of some of the directives you can specify in your logrotate configuration file:
  • weekly — Specifies the rotation of log files on a weekly basis. Similar directives include:
    • daily
    • monthly
    • yearly
  • compress — Enables compression of rotated log files. Similar directives include:
    • nocompress
    • compresscmd — Specifies the command to be used for compressing.
    • uncompresscmd
    • compressext — Specifies what extension is to be used for compressing.
    • compressoptions — Lets you specify any options that may be passed to the used compression program.
    • delaycompress — Postpones the compression of log files to the next rotation of log files.
  • rotate <INTEGER> — Specifies the number of rotations a log file undergoes before it is removed or mailed to a specific address. If the value 0 is specified, old log files are removed instead of rotated.
  • mail <ADDRESS> — This option enables mailing of log files that have been rotated as many times as is defined by the rotate directive to the specified address. Similar directives include:
    • nomail
    • mailfirst — Specifies that the just-rotated log files are to be mailed, instead of the about-to-expire log files.
    • maillast — Specifies that the just-rotated log files are to be mailed, instead of the about-to-expire log files. This is the default option when mail is enabled.
For the full list of directives and various configuration options, refer to the logrotate man page (man logrotate).

18.3. Visualizar los archivos de registro

Most log files are in plain text format. You can view them with any text editor such as Vi or Emacs. Some log files are readable by all users on the system; however, root privileges are required to read most log files.
To view system log files in an interactive, real-time application, use the Log File Viewer.

Installing the gnome-system-log package

In order to use the Log File Viewer, first ensure the gnome-system-log package is installed on your system by running, as root:
yum install gnome-system-log
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.
After you have installed the gnome-system-log package, you can open the Log File Viewer by selecting ApplicationsSystem ToolsLog File Viewer from the Activities menu, or type the following command at a shell prompt:
gnome-system-log
The application only displays log files that exist; thus, the list might differ from the one shown in Figura 18.1, “ Log File Viewer ”.
Log File Viewer
Log File Viewer
Figura 18.1. Log File Viewer

The Log File Viewer application lets you filter any existing log file. Click on Filters from the menu and select Manage Filters to define or edit your desired filter.
Log File Viewer — filters
Log File Viewer — filters
Figura 18.2. Log File Viewer — filters

Adding or editing a filter lets you define its parameters as is shown in Figura 18.3, “ Log File Viewer — defining a filter ”.
Log File Viewer — defining a filter
Log File Viewer — defining a filter
Figura 18.3. Log File Viewer — defining a filter

When defining a filter, you can edit the following parameters:
  • Name — Specifies the name of the filter.
  • Regular Expression — Specifies the regular expression that will be applied to the log file and will attempt to match any possible strings of text in it.
  • Effect
    • Highlight — If checked, the found results will be highlighted with the selected color. You may select whether to highlight the background or the foreground of the text.
    • Hide — If checked, the found results will be hidden from the log file you are viewing.
When you have at least one filter defined, you may select it from the Filters menu and it will automatically search for the strings you have defined in the filter and highlight/hide every successful match in the log file you are currently viewing.
Log File Viewer — enabling a filter
Log File Viewer — enabling a filter
Figura 18.4. Log File Viewer — enabling a filter

When you check the Show matches only option, only the matched strings will be shown in the log file you are currently viewing.

18.4. Adding a Log File

To add a log file you wish to view in the list, select FileOpen. This will display the Open Log window where you can select the directory and file name of the log file you wish to view.Figura 18.5, “Log File Viewer — adding a log file” illustrates the Open Log window.
Log File Viewer — adding a log file
Log File Viewer — adding a log file
Figura 18.5. Log File Viewer — adding a log file

Click on the Open button to open the file. The file is immediately added to the viewing list where you can select it and view its contents.

Reading zipped log files

The Log File Viewer also allows you to open log files zipped in the .gz format.

18.5. Control de Archivos de Registro

Log File Viewer monitors all opened logs by default. If a new line is added to a monitored log file, the log name appears in bold in the log list. If the log file is selected or displayed, the new lines appear in bold at the bottom of the log file. Figura 18.6, “Log File Viewer — new log alert” illustrates a new alert in the yum.log log file and in the messages log file. Clicking on the messages log file displays the logs in the file with the new lines in bold.
Log File Viewer — new log alert
Log File Viewer — new log alert
Figura 18.6. Log File Viewer — new log alert

18.6. Recursos adicionales

To learn more about rsyslog, logrotate, and log files in general, refer to the following resources.

18.6.1. Documentación instalada

  • rsyslogd manual page — Type man rsyslogd to learn more about rsyslogd and its many options.
  • rsyslog.conf manual page — Type man rsyslog.conf to learn more about the /etc/rsyslog.conf configuration file and its many options.
  • /usr/share/doc/rsyslog-<version-number>/ — After installing the rsyslog package, this directory contains extensive documentation in the html format.
  • logrotate manual page — Type man logrotate to learn more about logrotate and its many options.

18.6.2. Sitios Web útiles

Capítulo 19. Automating System Tasks

In Linux, tasks, which are also known as jobs, can be configured to run automatically within a specified period of time, on a specified date, or when the system load average is below a specified number. Fedora is pre-configured to run important system tasks to keep the system updated. For example, the slocate database used by the locate command is updated daily. A system administrator can use automated tasks to perform periodic backups, monitor the system, run custom scripts, and more.
Fedora comes with several automated tasks utilities: cron, at, and batch.

19.1. Cron y Anacron

Both, Cron and Anacron, are daemons that can be used to schedule the execution of recurring tasks according to a combination of the time, day of the month, month, day of the week, and week.
Cron assumes that the system is on continuously. If the system is not on when a job is scheduled, it is not executed. Cron allows jobs to be run as often as every minute. Anacron does not assume the system is always on, remembers every scheduled job, and executes it the next time the system is up. However, Anacron can only run a job once a day. To schedule recurring jobs, refer to Sección 19.1.2, “Configuring Anacron Jobs” or Sección 19.1.3, “Configuring Cron Jobs”. To schedule one-time jobs, refer to Sección 19.2, “At y Batch”.
To use the cron service, the cronie RPM package must be installed and the crond service must be running. anacron is a sub-package of cronie. To determine if these packages are installed, use the rpm -q cronie cronie-anacron command.

19.1.1. Iniciar y finalizar el servicio

To determine if the service is running, use the following command:
systemctl is-active crond.service
To start the cron service, type the following at a shell prompt as root:
systemctl start crond.service
To stop the service, run the following command as root:
systemctl stop crond.service
It is recommended that you start the service at boot time. To do so, use the following command as root:
systemctl enable crond.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

19.1.2. Configuring Anacron Jobs

The main configuration file to schedule jobs is /etc/anacrontab (only root is allowed to modify this file), which contains the following lines:
SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
# the maximal random delay added to the base delay of the jobs
RANDOM_DELAY=45
# the jobs will be started during the following hours only
START_HOURS_RANGE=3-22

#period in days   delay in minutes   job-identifier   command
1         5     cron.daily    nice run-parts /etc/cron.daily
7         25    cron.weekly   nice run-parts /etc/cron.weekly
@monthly  45    cron.monthly  nice run-parts /etc/cron.monthly
The first three lines are variables used to configure the environment in which the anacron tasks are run. The SHELL variable tells the system which shell environment to use (in this example the bash shell). The PATH variable defines the path used to execute commands. The output of the anacron jobs are emailed to the username defined with the MAILTO variable. If the MAILTO variable is not defined, (i.e. is empty, MAILTO=), email is not sent.
The next two lines are variables that modify the time for each scheduled job. The RANDOM_DELAY variable denotes the maximum number of minutes that will be added to the delay in minutes variable which is specified for each job. The minimum delay value is set, by default, to 6 minutes. A RANDOM_DELAY set to 12 would therefore add, randomly, between 6 and 12 minutes to the delay in minutes for each job in that particular anacrontab. RANDOM_DELAY can also be set to a value below 6, or even 0. When set to 0, no random delay is added. This proves to be useful when, for example, more computers that share one network connection need to download the same data every day. The START_HOURS_RANGE variable defines an interval (in hours) when scheduled jobs can be run. In case this time interval is missed, for example, due to a power down, then scheduled jobs are not executed that day.
The rest of the lines in the /etc/anacrontab file represent scheduled jobs and have the following format:
period in days   delay in minutes   job-identifier   command
  • period in days — specifies the frequency of execution of a job in days. This variable can be represented by an integer or a macro (@daily, @weekly, @monthly), where @daily denotes the same value as the integer 1, @weekly the same as 7, and @monthly specifies that the job is run once a month, independent on the length of the month.
  • delay in minutes — specifies the number of minutes anacron waits, if necessary, before executing a job. This variable is represented by an integer where 0 means no delay.
  • job-identifier — specifies a unique name of a job which is used in the log files.
  • command — specifies the command to execute. The command can either be a command such as ls /proc >> /tmp/proc or a command to execute a custom script.
Any lines that begin with a hash sign (#) are comments and are not processed.

19.1.2.1. Examples of Anacron Jobs

The following example shows a simple /etc/anacrontab file:
SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

# the maximal random delay added to the base delay of the jobs
RANDOM_DELAY=30
# the jobs will be started during the following hours only
START_HOURS_RANGE=16-20

#period in days   delay in minutes   job-identifier   command
1         20    dailyjob      nice run-parts /etc/cron.daily
7         25    weeklyjob     /etc/weeklyjob.bash
@monthly  45    monthlyjob    ls /proc >> /tmp/proc
All jobs defined in this anacrontab file are randomly delayed by 6-30 minutes and can be executed between 16:00 and 20:00. Thus, the first defined job will run anywhere between 16:26 and 16:50 every day. The command specified for this job will execute all present programs in the /etc/cron.daily directory (using the run-parts script which takes a directory as a command-line argument and sequentially executes every program within that directory). The second specified job will be executed once a week and will execute the weeklyjob.bash script in the /etc directory. The third job is executed once a month and runs a command to write the contents of the /proc to the /tmp/proc file (e.g. ls /proc >> /tmp/proc).
19.1.2.1.1. Disabling Anacron
In case your system is continuously on and you do not require anacron to run your scheduled jobs, you may uninstall the cronie-anacron package. Thus, you will be able to define jobs using crontabs only.

19.1.3. Configuring Cron Jobs

The configuration file to configure cron jobs, /etc/crontab (only root is allowed to modify this file), contains the following lines:
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/
# For details see man 4 crontabs
# Example of job definition:
# .---------------- minute (0 - 59)
# | .------------- hour (0 - 23)
# | | .---------- day of month (1 - 31)
# | | | .------- month (1 - 12) OR jan,feb,mar,apr ...
# | | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
# | | | | |
# * * * * * user command to be executed
The first three lines contain the same variables as an anacrontab file, SHELL, PATH and MAILTO. For more information about these variables, refer to Sección 19.1.2, “Configuring Anacron Jobs”. The fourth line contains the HOME variable. The HOME variable can be used to set the home directory to use when executing commands or scripts.
The rest of the lines in the /etc/crontab file represent scheduled jobs and have the following format:
minute   hour   day   month   day of week   user   command
  • minute — any integer from 0 to 59
  • hour — any integer from 0 to 23
  • day — any integer from 1 to 31 (must be a valid day if a month is specified)
  • month — any integer from 1 to 12 (or the short name of the month such as jan or feb)
  • day of week — any integer from 0 to 7, where 0 or 7 represents Sunday (or the short name of the week such as sun or mon)
  • user — specifies the user under which the jobs are run
  • command — the command to execute (the command can either be a command such as ls /proc >> /tmp/proc or the command to execute a custom script)
En cualquiera de los valores antes indicados, se puede utilizar un asterisco (*) para especificar todos los valores válidos. Por ejemplo, un asterisco para el valor de mes significa que el comando se ejecutará cada mes dentro de las limitaciones del resto de los valores.
A hyphen (-) between integers specifies a range of integers. For example, 1-4 means the integers 1, 2, 3, and 4.
A list of values separated by commas (,) specifies a list. For example, 3, 4, 6, 8 indicates those four specific integers.
The forward slash (/) can be used to specify step values. The value of an integer can be skipped within a range by following the range with /integer. For example, 0-59/2 can be used to define every other minute in the minute field. Step values can also be used with an asterisk. For instance, the value */3 can be used in the month field to run the task every third month.
Any lines that begin with a hash sign (#) are comments and are not processed.
Users other than root can configure cron tasks by using the crontab utility. All user-defined crontabs are stored in the /var/spool/cron/ directory and are executed using the usernames of the users that created them. To create a crontab as a user, login as that user and type the command crontab -e to edit the user's crontab using the editor specified by the VISUAL or EDITOR environment variable. The file uses the same format as /etc/crontab. When the changes to the crontab are saved, the crontab is stored according to username and written to the file /var/spool/cron/username . To list the contents of your own personal crontab file, use the crontab -l command.

Do not specify a user

When using the crontab utility, there is no need to specify a user when defining a job.
The /etc/cron.d/ directory contains files that have the same syntax as the /etc/crontab file. Only root is allowed to create and modify files in this directory.

Do not restart the daemon to apply the changes

The cron daemon checks the /etc/anacrontab file, the /etc/crontab file, the /etc/cron.d/ directory, and the /var/spool/cron/ directory every minute for any changes. If any changes are found, they are loaded into memory. Thus, the daemon does not need to be restarted if an anacrontab or a crontab file is changed.

19.1.4. Controlando el acceso a Cron

The /etc/cron.allow and /etc/cron.deny files are used to restrict access to cron. The format of both access control files is one username on each line. Whitespace is not permitted in either file. The cron daemon (crond) does not have to be restarted if the access control files are modified. The access control files are checked each time a user tries to add or delete a cron job.
The root user can always use cron, regardless of the usernames listed in the access control files.
If the file cron.allow exists, only users listed in it are allowed to use cron, and the cron.deny file is ignored.
If cron.allow does not exist, users listed in cron.deny are not allowed to use cron.
Access can also be controlled through Pluggable Authentication Modules (PAM). These settings are stored in /etc/security/access.conf. For example, adding the following line in this file forbids creating crontabs for all users except the root user:
-:ALL EXCEPT root :cron
The forbidden jobs are logged in an appropriate log file or, when using “crontab -e”, returned to the standard output. For more information, refer to access.conf.5 (i.e. man 5 access.conf).

19.1.5. Black/White Listing of Cron Jobs

Black/White listing of jobs is used to omit parts of the defined jobs that do not need to be executed. When calling the run-parts script on a cron folder, such as /etc/cron.daily, we can define which of the programs in this folder will not be executed by run-parts.
To define a black list, create a jobs.deny file in the folder that run-parts will be executing from. For example, if we need to omit a particular program from /etc/cron.daily, then, a file /etc/cron.daily/jobs.deny has to be created. In this file, specify the names of the omitted programs from the same directory. These will not be executed when a command, such as run-parts /etc/cron.daily, is executed by a specific job.
To define a white list, create a jobs.allow file.
The principles of jobs.deny and jobs.allow are the same as those of cron.deny and cron.allow described in section Sección 19.1.4, “Controlando el acceso a Cron”.

19.2. At y Batch

While cron is used to schedule recurring tasks, the at command is used to schedule a one-time task at a specific time and the batch command is used to schedule a one-time task to be executed when the systems load average drops below 0.8.
To use at or batch, the at RPM package must be installed, and the atd service must be running. To determine if the package is installed, use the rpm -q at command. To determine if the service is running, use the following command:
systemctl is-active atd.service

19.2.1. Configuración de tareas At

To schedule a one-time job at a specific time, type the command at time , where time is the time to execute the command.
El argumento time puede ser uno de los siguientes:
  • HH:MM format — For example, 04:00 specifies 4:00 a.m. If the time is already past, it is executed at the specified time the next day.
  • midnight — Specifies 12:00 a.m.
  • noon — Specifies 12:00 p.m.
  • teatime — Specifies 4:00 p.m.
  • month-name day year format — For example, January 15 2002 specifies the 15th day of January in the year 2002. The year is optional.
  • MMDDYY, MM/DD/YY, or MM.DD.YY formats — For example, 011502 for the 15th day of January in the year 2002.
  • now + time — time is in minutes, hours, days, or weeks. For example, now + 5 days specifies that the command should be executed at the same time five days from now.
The time must be specified first, followed by the optional date. For more information about the time format, read the /usr/share/doc/at-version/timespec text file.
After typing the at command with the time argument, the at> prompt is displayed. Type the command to execute, press Enter, and press Ctrl+D . Multiple commands can be specified by typing each command followed by the Enter key. After typing all the commands, press Enter to go to a blank line and press Ctrl+D . Alternatively, a shell script can be entered at the prompt, pressing Enter after each line in the script, and pressing Ctrl+D on a blank line to exit. If a script is entered, the shell used is the shell set in the user's SHELL environment, the user's login shell, or /bin/sh (whichever is found first).
If the set of commands or script tries to display information to standard output, the output is emailed to the user.
Use the command atq to view pending jobs. Refer to Sección 19.2.3, “Visualizando las tareas pendientes” for more information.
Usage of the at command can be restricted. For more information, refer to Sección 19.2.5, “Control de acceso a At y Batch” for details.

19.2.2. Configuración de tareas Batch

To execute a one-time task when the load average is below 0.8, use the batch command.
After typing the batch command, the at> prompt is displayed. Type the command to execute, press Enter, and press Ctrl+D . Multiple commands can be specified by typing each command followed by the Enter key. After typing all the commands, press Enter to go to a blank line and press Ctrl+D . Alternatively, a shell script can be entered at the prompt, pressing Enter after each line in the script, and pressing Ctrl+D on a blank line to exit. If a script is entered, the shell used is the shell set in the user's SHELL environment, the user's login shell, or /bin/sh (whichever is found first). As soon as the load average is below 0.8, the set of commands or script is executed.
Si la configuración de comandos o el script intentan visualizar información, la salida de datos será enviada vía correo electrónico al usuario.
Use the command atq to view pending jobs. Refer to Sección 19.2.3, “Visualizando las tareas pendientes” for more information.
Usage of the batch command can be restricted. For more information, refer to Sección 19.2.5, “Control de acceso a At y Batch” for details.

19.2.3. Visualizando las tareas pendientes

To view pending at and batch jobs, use the atq command. The atq command displays a list of pending jobs, with each job on a line. Each line follows the job number, date, hour, job class, and username format. Users can only view their own jobs. If the root user executes the atq command, all jobs for all users are displayed.

19.2.4. Opciones adicionales de la línea de comandos

Additional command line options for at and batch include:
Tabla 19.1. at and batch Command Line Options
Opciones Descripción
-f Lee los comandos o script del shell desde un archivo en vez de ser especificados en el intérprete de comandos.
-m Envía un email al usuario cuando se ha completado la tarea.
-v Muestra la hora en la que la tarea será ejecutada.

19.2.5. Control de acceso a At y Batch

The /etc/at.allow and /etc/at.deny files can be used to restrict access to the at and batch commands. The format of both access control files is one username on each line. Whitespace is not permitted in either file. The at daemon (atd) does not have to be restarted if the access control files are modified. The access control files are read each time a user tries to execute the at or batch commands.
The root user can always execute at and batch commands, regardless of the access control files.
If the file at.allow exists, only users listed in it are allowed to use at or batch, and the at.deny file is ignored.
If at.allow does not exist, users listed in at.deny are not allowed to use at or batch.

19.2.6. Iniciar y finalizar el servicio

To start the at service, use the following command as root:
systemctl start atd.service
To stop the service, as root, type the following at a shell prompt:
systemctl stop atd.service
It is recommended that you start the service at boot time. To do so, run the following command as root:
systemctl enable atd.service
Refer to Capítulo 8, Services and Daemons for more information on how to configure services in Fedora.

19.3. Recursos adicionales

Para obtener más información sobre cómo configurar tareas automáticas, consulte los recursos siguientes.

19.3.1. Documentación instalada

  • cron man page — contains an overview of cron.
  • crontab man pages in sections 1 and 5 — The man page in section 1 contains an overview of the crontab file. The man page in section 5 contains the format for the file and some example entries.
  • anacron man page — contains an overview of anacron.
  • anacrontab man page — contains an overview of the anacrontab file.
  • /usr/share/doc/at-version/timespec contains more detailed information about the times that can be specified for cron jobs.
  • at man page — description of at and batch and their command line options.

Capítulo 20. OProfile

OProfile is a low overhead, system-wide performance monitoring tool. It uses the performance monitoring hardware on the processor to retrieve information about the kernel and executables on the system, such as when memory is referenced, the number of L2 cache requests, and the number of hardware interrupts received. On a Fedora system, the oprofile package must be installed to use this tool.
Muchos procesadores incluyen hardware dedicado a la supervisión. Este hardware hace posible detectar la ocurrencia de ciertos eventos (tal como que los datos solicitados no estén en caché). El harware normalmente toma la forma de uno o más contadores que se incrementan cada vez que ocurre un evento. Cuando el valor del contador llega al "máximo," se genera una interrupción, haciendo posible controlar la cantidad de detalles (y por tanto, la sobrecarga) producida por la supervisión del rendimiento.
OProfile utiliza este hardware (o un substituto basado en temporizadores en casos donde no está presente el hardware de supervisión) para reunir muestras de datos relacionados al rendimiento cada vez que un contador genera una interrupción. Estas muestras son escritas periódicamente al disco; luego los datos contenidos en estas muestras pueden ser usados para generar informes de rendimiento a nivel del sistema y de las aplicaciones.
Oprofile es una herramienta útil, pero tenga en cuenta ciertas limitaciones cuando lo esté utilizando:
  • Use of shared libraries — Samples for code in shared libraries are not attributed to the particular application unless the --separate=library option is used.
  • Performance monitoring samples are inexact — When a performance monitoring register triggers a sample, the interrupt handling is not precise like a divide by zero exception. Due to the out-of-order execution of instructions by the processor, the sample may be recorded on a nearby instruction.
  • opreport does not associate samples for inline functions properlyopreport uses a simple address range mechanism to determine which function an address is in. Inline function samples are not attributed to the inline function but rather to the function the inline function was inserted into.
  • OProfile accumulates data from multiple runs — OProfile is a system-wide profiler and expects processes to start up and shut down multiple times. Thus, samples from multiple runs accumulate. Use the command opcontrol --reset to clear out the samples from previous runs.
  • Hardware performance counters do not work on guest virtual machines — Because the hardware performance counters are not available on virtual systems, you need to use the timer mode. Run the command opcontrol --deinit, and then execute modprobe oprofile timer=1 to enable the timer mode.
  • Non-CPU-limited performance problems — OProfile is oriented to finding problems with CPU-limited processes. OProfile does not identify processes that are asleep because they are waiting on locks or for some other event to occur (for example an I/O device to finish an operation).

20.1. Descripción general de las herramientas

Tabla 20.1, “Comandos OProfile” provides a brief overview of the tools provided with the oprofile package.
Tabla 20.1. Comandos OProfile
Comando Descripción
ophelp
Muestra los eventos disponibles para el procesador del sistema junto con una breve descripción para cada uno.
opimport
Convierte archivos de la base de datos de muestras de un formato binario extraño al formato nativo para el sistema. Solamente utilice esta opción cuando esté analizando una base de datos de muestras desde una arquitectura diferente.
opannotate Creates annotated source for an executable if the application was compiled with debugging symbols. Refer to Sección 20.5.4, “Using opannotate for details.
opcontrol
Configures what data is collected. Refer to Sección 20.2, “Configuración de Oprofile” for details.
opreport
Retrieves profile data. Refer to Sección 20.5.1, “Using opreport for details.
oprofiled
Se ejecuta como un demonio para escribir periódicamente datos de muestra al disco.

20.2. Configuración de Oprofile

Before OProfile can be run, it must be configured. At a minimum, selecting to monitor the kernel (or selecting not to monitor the kernel) is required. The following sections describe how to use the opcontrol utility to configure OProfile. As the opcontrol commands are executed, the setup options are saved to the /root/.oprofile/daemonrc file.

20.2.1. Especificar el Kernel

Primero, configure si Oprofile debería supervisar el kernel. Esta es la única opción de configuración que se requiere antes de iniciar Oprofile. Todas las otras opciones son opcionales.
Para supervisar el kernel, ejecute el comando siguiente como root:
~]# opcontrol --setup --vmlinux=/usr/lib/debug/lib/modules/`uname -r`/vmlinux

Install the debuginfo package

The debuginfo package for the kernel must be installed (which contains the uncompressed kernel) in order to monitor the kernel.
Para configurar Oprofile para que no controle el kernel, ejecute el comando siguiente como root:
~]# opcontrol --setup --no-vmlinux
This command also loads the oprofile kernel module, if it is not already loaded, and creates the /dev/oprofile/ directory, if it does not already exist. Refer to Sección 20.6, “Understanding /dev/oprofile/ for details about this directory.
Setting whether samples should be collected within the kernel only changes what data is collected, not how or where the collected data is stored. To generate different sample files for the kernel and application libraries, refer to Sección 20.2.3, “Separar perfiles del Kernel y del espacio del usuario”.

20.2.2. Configurar los eventos a supervisar

Most processors contain counters, which are used by OProfile to monitor specific events. As shown in Tabla 20.2, “Procesadores y contadores de Oprofile”, the number of counters available depends on the processor.
Tabla 20.2. Procesadores y contadores de Oprofile
Procesador cpu_type Número de contadores
AMD64 x86-64/hammer 4
AMD Athlon i386/athlon 4
AMD Family 10h x86-64/family10 4
AMD Family 11h x86-64/family11 4
AMD Family 12h x86-64/family12 4
AMD Family 14h x86-64/family14 4
AMD Family 15h x86-64/family15 6
IBM eServer System i and IBM eServer System p timer 1
IBM POWER4 ppc64/power4 8
IBM POWER5 ppc64/power5 6
IBM PowerPC 970 ppc64/970 8
IBM S/390 and IBM System z timer 1
Intel Core i7 i386/core_i7 4
Intel Nehalem microarchitecture i386/nehalem 4
Intel Pentium 4 (non-hyper-threaded) i386/p4 8
Intel Pentium 4 (hyper-threaded) i386/p4-ht 4
Intel Westmere microarchitecture i386/westmere 4
TIMER_INT timer 1

Use Tabla 20.2, “Procesadores y contadores de Oprofile” to verify that the correct processor type was detected and to determine the number of events that can be monitored simultaneously. timer is used as the processor type if the processor does not have supported performance monitoring hardware.
If timer is used, events cannot be set for any processor because the hardware does not have support for hardware performance counters. Instead, the timer interrupt is used for profiling.
If timer is not used as the processor type, the events monitored can be changed, and counter 0 for the processor is set to a time-based event by default. If more than one counter exists on the processor, the counters other than counter 0 are not set to an event by default. The default events monitored are shown in Tabla 20.3, “Eventos predeterminados”.
Tabla 20.3. Eventos predeterminados
Procesador Evento Predeterminado para el Contador Descripción
AMD Athlon and AMD64 CPU_CLK_UNHALTED El reloj del procesador no está detenido
AMD Family 10h, AMD Family 11h, AMD Family 12h CPU_CLK_UNHALTED El reloj del procesador no está detenido
AMD Family 14h, AMD Family 15h CPU_CLK_UNHALTED El reloj del procesador no está detenido
IBM POWER4 CICLOS Ciclos del Procesador
IBM POWER5 CICLOS Ciclos del Procesador
IBM PowerPC 970 CICLOS Ciclos del Procesador
Intel Core i7 CPU_CLK_UNHALTED El reloj del procesador no está detenido
Intel Nehalem microarchitecture CPU_CLK_UNHALTED El reloj del procesador no está detenido
Intel Pentium 4 (hyper-threaded and non-hyper-threaded) GLOBAL_POWER_EVENTS El tiempo durante el cual el procesador no está detenido
Intel Westmere microarchitecture CPU_CLK_UNHALTED El reloj del procesador no está detenido
TIMER_INT (ninguno) Muestra para cada interrupción del temporizador

El número de eventos que se pueden supervisar a la vez, es determinado por el número de contadores para el procesador. Sin embargo, no es una relación de uno a uno; en algunos procesadores, se deben mapear ciertos eventos a contadores específicos. Para determinar el número de contadores disponibles, ejecute el comando siguiente:
~]# ls -d /dev/oprofile/[0-9]*
Los eventos disponibles varían dependiendo del tipo de procesador. Para determinar los eventos disponibles para el perfilamiento, ejecute el comando siguiente como root (la lista es específica al tipo de procesador):
~]# ophelp
The events for each counter can be configured via the command line or with a graphical interface. For more information on the graphical interface, refer to Sección 20.9, “Interfaz gráfica”. If the counter cannot be set to a specific event, an error message is displayed.
To set the event for each configurable counter via the command line, use opcontrol:
~]# opcontrol --event=event-name:sample-rate
Replace event-name with the exact name of the event from ophelp, and replace sample-rate with the number of events between samples.

20.2.2.1. Velocidad de muestreo

By default, a time-based event set is selected. It creates a sample every 100,000 clock cycles per processor. If the timer interrupt is used, the timer is set to whatever the jiffy rate is and is not user-settable. If the cpu_type is not timer, each event can have a sampling rate set for it. The sampling rate is the number of events between each sample snapshot.
Cuando configure el evento para el contador, también se puede especificar una velocidad de muestreo:
~]# opcontrol --event=event-name:sample-rate
Replace sample-rate with the number of events to wait before sampling again. The smaller the count, the more frequent the samples. For events that do not happen frequently, a lower count may be needed to capture the event instances.

Sampling too frequently can overload the system

Tenga extremo cuidado cuando configure las velocidades de muestreo. Si se toman muestras con demasiada frecuencia puede sobrecargar al sistema, causando que el sistema parezca congelado o que en verdad el sistema se congele.

20.2.2.2. Máscaras de unidades

Algunos eventos de monitoriamiento del desempeño pueden necesitar máscaras de unidades para definir aún más el evento.
Unit masks for each event are listed with the ophelp command. The values for each unit mask are listed in hexadecimal format. To specify more than one unit mask, the hexadecimal values must be combined using a bitwise or operation.
~]# opcontrol --event=event-name:sample-rate:unit-mask

20.2.3. Separar perfiles del Kernel y del espacio del usuario

Por defecto, se reune información del modo del kernel y del modo del usuario por cada evento. Para configurar Oprofile para que ignore los eventos en modo del kernel para un contador en particular, ejecute el siguiente comando:
~]# opcontrol --event=event-name:sample-rate:unit-mask:0
Ejecute el comando siguiente para comenzar a perfilar otra vez en modo kernel para el contador:
~]# opcontrol --event=event-name:sample-rate:unit-mask:1
Para configurar Oprofile para que ignore eventos en modo usuario para un contador específico, ejecute el siguiente comando:
~]# opcontrol --event=event-name:sample-rate:unit-mask:kernel:0
Ejecute el comando siguiente para comenzar a perfilar nuevamente en modo usuario para el contador:
~]# opcontrol --event=event-name:sample-rate:unit-mask:kernel:1
Cuando el demonio Oprofile escribe datos del perfil a los archivos de muestras, puede separar los datos del perfil de kernel y de la biblioteca en archivos separados. Para configurar la forma en que el demonio escribe a los archivos de muestra, ejecute el comando siguiente como root:
~]# opcontrol --separate=choice
choice can be one of the following:
  • none — do not separate the profiles (default)
  • library — generate per-application profiles for libraries
  • kernel — generate per-application profiles for the kernel and kernel modules
  • all — generate per-application profiles for libraries and per-application profiles for the kernel and kernel modules
Si se utiliza --separate=library, el nombre del archivo de muestras incluye el nombre del ejecutable así como también el nombre de la biblioteca.

Restart the OProfile profiler

These configuration changes will take effect when the OProfile profiler is restarted.

20.3. Iniciar y detener Oprofile

Para comenzar a supervisar el sistema con Oprofile, ejecute el comando siguiente como root:
~]# opcontrol --start
Se muestra una salida similar a la siguiente:
Using log file /var/lib/oprofile/oprofiled.log Daemon started. Profiler running.
The settings in /root/.oprofile/daemonrc are used.
The OProfile daemon, oprofiled, is started; it periodically writes the sample data to the /var/lib/oprofile/samples/ directory. The log file for the daemon is located at /var/lib/oprofile/oprofiled.log.

Disable the nmi_watchdog registers

On a Fedora 17 system, the nmi_watchdog registers with the perf subsystem. Due to this, the perf subsystem grabs control of the performance counter registers at boot time, blocking OProfile from working.
To resolve this, either boot with the nmi_watchdog=0 kernel parameter set, or run the following command to disable nmi_watchdog at run time:
~]# echo 0 > /proc/sys/kernel/nmi_watchdog
To re-enable nmi_watchdog, use the following command:
~]# echo 1 > /proc/sys/kernel/nmi_watchdog
Para detener el perfilador, ejecute el siguiente comando como root:
~]# opcontrol --shutdown

20.4. Guardar los datos

Algunas veces es útil guardar las muestras a una hora específica. Por ejemplo, cuando se esté perfilando un ejecutable, puede ser útil reunir muestras diferentes basadas en diferentes conjuntos de datos de entrada. Si el número de eventos a monitorear excede el número de contadores disponibles para el procesador, se puede ejecutar varias veces Oprofile para reunir los datos, guardando los datos de muestra a archivos diferentes cada vez.
To save the current set of sample files, execute the following command, replacing name with a unique descriptive name for the current session.
~]# opcontrol --save=name
The directory /var/lib/oprofile/samples/name/ is created and the current sample files are copied to it.

20.5. Análisis de los datos

Periodically, the OProfile daemon, oprofiled, collects the samples and writes them to the /var/lib/oprofile/samples/ directory. Before reading the data, make sure all data has been written to this directory by executing the following command as root:
~]# opcontrol --dump
Each sample file name is based on the name of the executable. For example, the samples for the default event on a Pentium III processor for /bin/bash becomes:
\{root\}/bin/bash/\{dep\}/\{root\}/bin/bash/CPU_CLK_UNHALTED.100000
Las herramientas siguientes están disponibles para perfilar los datos de muestra una vez que se han reunido:
  • opreport
  • opannotate
Utilice estas herramientas, junto con los binarios perfilados para generar informes que pueden ser analizados más aún.

Back up the executable and the sample files

The executable being profiled must be used with these tools to analyze the data. If it must change after the data is collected, back up the executable used to create the samples as well as the sample files. Please note that the sample file and the binary have to agree. Making a backup is not going to work if they do not match. oparchive can be used to address this problem.
Samples for each executable are written to a single sample file. Samples from each dynamically linked library are also written to a single sample file. While OProfile is running, if the executable being monitored changes and a sample file for the executable exists, the existing sample file is automatically deleted. Thus, if the existing sample file is needed, it must be backed up, along with the executable used to create it before replacing the executable with a new version. The OProfile analysis tools use the executable file that created the samples during analysis. If the executable changes the analysis tools will be unable to analyze the associated samples. Refer to Sección 20.4, “Guardar los datos” for details on how to back up the sample file.

20.5.1. Using opreport

The opreport tool provides an overview of all the executables being profiled.
Lo siguiente forma parte de una salida de ejemplo:
Profiling through timer interrupt
TIMER:0|
samples|      %|
------------------
25926 97.5212 no-vmlinux
359  1.3504 pi
65  0.2445 Xorg
62  0.2332 libvte.so.4.4.0
56  0.2106 libc-2.3.4.so
34  0.1279 libglib-2.0.so.0.400.7
19  0.0715 libXft.so.2.1.2
17  0.0639 bash
8  0.0301 ld-2.3.4.so
8  0.0301 libgdk-x11-2.0.so.0.400.13
6  0.0226 libgobject-2.0.so.0.400.7
5  0.0188 oprofiled
4  0.0150 libpthread-2.3.4.so
4  0.0150 libgtk-x11-2.0.so.0.400.13
3  0.0113 libXrender.so.1.2.2
3  0.0113 du
1  0.0038 libcrypto.so.0.9.7a
1  0.0038 libpam.so.0.77
1  0.0038 libtermcap.so.2.0.8
1  0.0038 libX11.so.6.2
1  0.0038 libgthread-2.0.so.0.400.7
1  0.0038 libwnck-1.so.4.9.0
Cada ejecutable es listado en su propia línea. La primera columna es el número de muestras registradas para el ejecutable. La segunda columna es el porcentaje de muestras relativo al número total de muestras. La tercera columna es el nombre del ejecutable.
Refer to the opreport man page for a list of available command line options, such as the -r option used to sort the output from the executable with the smallest number of samples to the one with the largest number of samples.

20.5.2. Using opreport on a Single Executable

To retrieve more detailed profiled information about a specific executable, use opreport:
~]# opreport mode executable
executable must be the full path to the executable to be analyzed. mode must be one of the following:
-l
List sample data by symbols. For example, the following is part of the output from running the command opreport -l /lib/tls/libc-version.so:
samples % symbol name 
12 21.4286 __gconv_transform_utf8_internal 
5 8.9286 _int_malloc 4 7.1429 malloc 
3 5.3571 __i686.get_pc_thunk.bx 
3 5.3571 _dl_mcount_wrapper_check 
3 5.3571 mbrtowc 
3 5.3571 memcpy 
2 3.5714 _int_realloc 
2 3.5714 _nl_intern_locale_data 
2 3.5714 free 
2 3.5714 strcmp 
1 1.7857 __ctype_get_mb_cur_max 
1 1.7857 __unregister_atfork 
1 1.7857 __write_nocancel 
1 1.7857 _dl_addr 
1 1.7857 _int_free 
1 1.7857 _itoa_word 
1 1.7857 calc_eclosure_iter 
1 1.7857 fopen@@GLIBC_2.1 
1 1.7857 getpid 
1 1.7857 memmove 
1 1.7857 msort_with_tmp 
1 1.7857 strcpy 
1 1.7857 strlen 
1 1.7857 vfprintf 
1 1.7857 write
La primera columna es el número de muestras para el símbolo, la segunda columna es el porcentaje de muestras para este símbolo con relación a las muestras en general para el ejecutable y la tercera columna es el nombre del símbolo.
Para ordenar la salida desde el número más grande de muestras al más pequeño (orden inverso), utilice la opción -r en conjunto con la opción -l.
-i symbol-name
List sample data specific to a symbol name. For example, the following output is from the command opreport -l -i __gconv_transform_utf8_internal /lib/tls/libc-version.so:
samples % symbol name 
12 100.000 __gconv_transform_utf8_internal
La primera línea es un resúmen para la combinación símbolo/ejecutable.
La primera columna es el número de muestras para el símbolo de memoria. La segunda columna es el número el porcentaje de muestras para la dirección de memoria relativa al número total de muestras para el símbolo. La tercera columna es el nombre del símbolo.
-d
List sample data by symbols with more detail than -l. For example, the following output is from the command opreport -l -d __gconv_transform_utf8_internal /lib/tls/libc-version.so:
vma samples % symbol name 
00a98640 12 100.000 __gconv_transform_utf8_internal 
00a98640 1 8.3333 
00a9868c 2 16.6667 
00a9869a 1 8.3333 
00a986c1 1 8.3333 
00a98720 1 8.3333 
00a98749 1 8.3333 
00a98753 1 8.3333 
00a98789 1 8.3333 
00a98864 1 8.3333 
00a98869 1 8.3333 
00a98b08 1 8.3333
Los datos son los mismos que con la opción -l excepto que para cada símbolo, se muestra cada dirección virtual de memoria utilizada. Para cada dirección virtual de memoria se despliegan, el número de muestras y los porcentajes de las muestras relativos al número de muestras para el símbolo.
-x symbol-name
Excluye la lista de símbolos separada por comas de la salida.
session:name
Specify the full path to the session or a directory relative to the /var/lib/oprofile/samples/ directory.

20.5.3. Obtener salidas más detalladas sobre los módulos

OProfile collects data on a system-wide basis for kernel- and user-space code running on the machine. However, once a module is loaded into the kernel, the information about the origin of the kernel module is lost. The module could have come from the initrd file on boot up, the directory with the various kernel modules, or a locally created kernel module. As a result, when OProfile records sample for a module, it just lists the samples for the modules for an executable in the root directory, but this is unlikely to be the place with the actual code for the module. You will need to take some steps to make sure that analysis tools get the executable.
To get a more detailed view of the actions of the module, you will need to either have the module "unstripped" (that is installed from a custom build) or have the debuginfo package installed for the kernel.
Find out which kernel is running with the uname -a command, obtain the appropriate debuginfo package and install it on the machine.
Then proceed with clearing out the samples from previous runs with the following command:
~]# opcontrol --reset
To start the monitoring process, for example, on a machine with Westmere processor, run the following command:
~]# opcontrol --setup --vmlinux=/usr/lib/debug/lib/modules/`uname -r`/vmlinux \
--event=CPU_CLK_UNHALTED:500000
Then the detailed information, for instance, for the ext4 module can be obtained with:
~]# opreport /ext4 -l --image-path /lib/modules/`uname -r`/kernel
CPU: Intel Westmere microarchitecture, speed 2.667e+06 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No unit mask) count 500000
warning: could not check that the binary file /lib/modules/2.6.32-191.el6.x86_64/kernel/fs/ext4/ext4.ko has not been modified since the profile was taken. Results may be inaccurate.
samples  %        symbol name
1622      9.8381  ext4_iget
1591      9.6500  ext4_find_entry
1231      7.4665  __ext4_get_inode_loc
783       4.7492  ext4_ext_get_blocks
752       4.5612  ext4_check_dir_entry
644       3.9061  ext4_mark_iloc_dirty
583       3.5361  ext4_get_blocks
583       3.5361  ext4_xattr_get
479       2.9053  ext4_htree_store_dirent
469       2.8447  ext4_get_group_desc
414       2.5111  ext4_dx_find_entry

20.5.4. Using opannotate

The opannotate tool tries to match the samples for particular instructions to the corresponding lines in the source code. The resulting files generated should have the samples for the lines at the left. It also puts in a comment at the beginning of each function listing the total samples for the function.
For this utility to work, the appropriate debuginfo package for the executable must be installed on the system. By default, Fedora debuginfo packages are not installed together with their corresponding packages, which contain the executable, so that you have to obtain and install the debuginfo packages separately.
The general syntax for opannotate is as follows:
~]# opannotate --search-dirs src-dir --source executable
The directory containing the source code and the executable to be analyzed must be specified. Refer to the opannotate man page for a list of additional command line options.

20.6. Understanding /dev/oprofile/

The /dev/oprofile/ directory contains the file system for OProfile. Use the cat command to display the values of the virtual files in this file system. For example, the following command displays the type of processor OProfile detected:
~]# cat /dev/oprofile/cpu_type
A directory exists in /dev/oprofile/ for each counter. For example, if there are 2 counters, the directories /dev/oprofile/0/ and dev/oprofile/1/ exist.
Cada directorio de contadores contiene los archivos siguientes:
  • count — The interval between samples.
  • enabled — If 0, the counter is off and no samples are collected for it; if 1, the counter is on and samples are being collected for it.
  • event — The event to monitor.
  • extra — Used on machines with Nehalem processors to further specify the event to monitor.
  • kernel — If 0, samples are not collected for this counter event when the processor is in kernel-space; if 1, samples are collected even if the processor is in kernel-space.
  • unit_mask — Defines which unit masks are enabled for the counter.
  • user — If 0, samples are not collected for the counter event when the processor is in user-space; if 1, samples are collected even if the processor is in user-space.
The values of these files can be retrieved with the cat command. For example:
~]# cat /dev/oprofile/0/count

20.7. Ejemplo de uso

Mientras que Oprofile puede ser usado por desarrolladores para analizar el rendimiento de una aplicación, también puede ser usado por los administradores de sistemas para analizar el rendimiento del sistema. Por ejemplo:
  • Determine which applications and services are used the most on a systemopreport can be used to determine how much processor time an application or service uses. If the system is used for multiple services but is under performing, the services consuming the most processor time can be moved to dedicated systems.
  • Determine processor usage — The CPU_CLK_UNHALTED event can be monitored to determine the processor load over a given period of time. This data can then be used to determine if additional processors or a faster processor might improve system performance.

20.8. OProfile Support for Java

OProfile allows you to profile dynamically compiled code (also known as "just-in-time" or JIT code) of the Java Virtual Machine (JVM). OProfile in Fedora 17 includes build-in support for the JVM Tools Interface (JVMTI) agent library, which supports Java 1.5 and higher.

20.8.1. Profiling Java Code

To profile JIT code from the Java Virtual Machine with the JVMTI agent, add the following to the JVM startup parameters:
-agentlib:jvmti_oprofile

Install the oprofile-jit package

The oprofile-jit package must be installed on the system in order to profile JIT code with OProfile.
To learn more about Java support in OProfile, refer to the OProfile Manual, which is linked from Sección 20.11, “Recursos adicionales”.

20.9. Interfaz gráfica

Some OProfile preferences can be set with a graphical interface. To start it, execute the oprof_start command as root at a shell prompt. To use the graphical interface, you will need to have the oprofile-gui package installed.
After changing any of the options, save them by clicking the Save and quit button. The preferences are written to /root/.oprofile/daemonrc, and the application exits. Exiting the application does not stop OProfile from sampling.
On the Setup tab, to set events for the processor counters as discussed in Sección 20.2.2, “Configurar los eventos a supervisar”, select the counter from the pulldown menu and select the event from the list. A brief description of the event appears in the text box below the list. Only events available for the specific counter and the specific architecture are displayed. The interface also displays whether the profiler is running and some brief statistics about it.
Disposición de Oprofile
oprof_start interface
Figura 20.1. Disposición de Oprofile

On the right side of the tab, select the Profile kernel option to count events in kernel mode for the currently selected event, as discussed in Sección 20.2.3, “Separar perfiles del Kernel y del espacio del usuario”. If this option is unselected, no samples are collected for the kernel.
Select the Profile user binaries option to count events in user mode for the currently selected event, as discussed in Sección 20.2.3, “Separar perfiles del Kernel y del espacio del usuario”. If this option is unselected, no samples are collected for user applications.
Use the Count text field to set the sampling rate for the currently selected event as discussed in Sección 20.2.2.1, “Velocidad de muestreo”.
If any unit masks are available for the currently selected event, as discussed in Sección 20.2.2.2, “Máscaras de unidades”, they are displayed in the Unit Masks area on the right side of the Setup tab. Select the checkbox beside the unit mask to enable it for the event.
On the Configuration tab, to profile the kernel, enter the name and location of the vmlinux file for the kernel to monitor in the Kernel image file text field. To configure OProfile not to monitor the kernel, select No kernel image.
OProfile Configuration
OProfile Configuration
Figura 20.2. OProfile Configuration

If the Verbose option is selected, the oprofiled daemon log includes more information.
If Per-application profiles is selected, OProfile generates per-application profiles for libraries. This is equivalent to the opcontrol --separate=library command. If Per-application profiles, including kernel is selected, OProfile generates per-application profiles for the kernel and kernel modules as discussed in Sección 20.2.3, “Separar perfiles del Kernel y del espacio del usuario”. This is equivalent to the opcontrol --separate=kernel command.
To force data to be written to samples files as discussed in Sección 20.5, “Análisis de los datos”, click the Flush button. This is equivalent to the opcontrol --dump command.
To start OProfile from the graphical interface, click Start. To stop the profiler, click Stop. Exiting the application does not stop OProfile from sampling.

20.10. OProfile and SystemTap

SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the operating system in fine detail. It provides information similar to the output of tools like netstat, ps, top, and iostat; however, SystemTap is designed to provide more filtering and analysis options for collected information.
While using OProfile is suggested in cases of collecting data on where and why the processor spends time in a particular area of code, it is less usable when finding out why the processor stays idle.
You might want to use SystemTap when instrumenting specific places in code. Because SystemTap allows you to run the code instrumentation without having to stop and restart the instrumentation, it is particularly useful for instrumenting the kernel and daemons.
For more information on SystemTap, refer to Sección 20.11.2, “Sitios Web útiles” for the relevant SystemTap documentation.

20.11. Recursos adicionales

Este capítulo solamente resalta Oprofile y cómo configurarlo y utilizarlo. Para aprender un poco más, consulte los recursos siguientes.

20.11.1. Documentos instalados

  • /usr/share/doc/oprofile-version/oprofile.htmlOProfile Manual
  • oprofile man page — Discusses opcontrol, opreport, opannotate, and ophelp

20.11.2. Sitios Web útiles

Parte VII. Configuración del kernel, módulos y controladores

Este apartado cubre varias herramientas que ayudan a los administradores a la personalización del kernel

Tabla de contenidos

21. Actualización Manual del Kernel
21.1. Descripción general de los Paquetes del kernel
21.2. Preparación para la actualización
21.3. Descarga el Kernel actualizado
21.4. Realizando la actualización
21.5. Verificación de la imagen de disco RAM inicial
21.6. Configuración del gestor de arranque
21.6.1. Configuring the GRUB 2 Boot Loader
21.6.2. Configurando el gestor de arranque del OS/400
21.6.3. Configurando el gestor de arranque YABOOT
22. Working with Kernel Modules
22.1. Listing Currently-Loaded Modules
22.2. Displaying Information About a Module
22.3. Loading a Module
22.4. Unloading a Module
22.5. Setting Module Parameters
22.6. Carga Persistente de Módulos
22.7. Specific Kernel Module Capabilities
22.7.1. Utilización de Múltiples Tarjetas Ethernet
22.7.2. Using Channel Bonding
22.8. Recursos adicionales
22.8.1. Documentación instalada
22.8.2. Sitios Web útiles
23. The kdump Crash Recovery Service
23.1. Installing the kdump Service
23.2. Configuring the kdump Service
23.2.1. Configuring the kdump at First Boot
23.2.2. Using the Kernel Dump Configuration Utility
23.2.3. Configuring kdump on the Command Line
23.2.4. Testing the Configuration
23.3. Analyzing the Core Dump
23.3.1. Running the crash Utility
23.3.2. Displaying the Message Buffer
23.3.3. Displaying a Backtrace
23.3.4. Displaying a Process Status
23.3.5. Displaying Virtual Memory Information
23.3.6. Displaying Open Files
23.3.7. Exiting the Utility
23.4. Recursos adicionales
23.4.1. Documentación instalada
23.4.2. Sitios Web útiles

Capítulo 21. Actualización Manual del Kernel

Para asegurar su integridad y compatibilidad con los equipos soportados el kernel de Fedora se construye de manera personalizada por el equipo del kernel de Fedora. Antes de que un kernel sea liberado, tiene que pasar por muchas pruebas de calidad.
los paquetes del kernel Fedora se empaquetan en el formato RPM, de manera que sean fáciles de actualizar y verificar utilizando uno de los administradores de paquetes tales Yum. El PackageKit busca automáticamente en los repositorios Yum e informa si sus paquetes tienen actualizaciones disponibles, incluyendo los paquetes del kernel (núcleo del sistema).
Por este motivo este capitulo es bueno solo para aquellos usuarios que desean actualizar el kernel (núcleo) de su equipo de manera manual utilizando el comando rpm en lugar del comando yum.

En lo posible Utilice Yum para instalar los kernel

Siempre que sea posible utilice Yum o el administrador de paquetes PackageKit para instalar un nuevo kernel porque estos siempre instalan un nuevo kernel en lugar de remplazar el existente, lo cual podria dejar su sistema sin posibilidad de arrancar.
Para mayor información sobre la instalación del kernel con Yum, refiérase a Sección 4.1.2, “Actualizando paquetes”.

21.1. Descripción general de los Paquetes del kernel

Fedora contiene los siguientes paquetes del kernel:
  • kernel — Contiene el kernel para procesadores simples, de múltiples y multi procesadores.
  • kernel-debug — Contiene el núcleo con muchas opciones de depuración habilitadas, para un mejor diagnóstico de problemas en el kernel, al costo de reducir su rendimiento.
  • kernel-devel — Contiene los encabezados del kernel y los archivos make necesarios para la construcción de módulos para el paquete kernel.
  • kernel-debug-devel — Contiene una versión de desarrollo del kernel con varias opciones de depuración para poder realizar diagnósticos, con el costo de reducción del rendimiento.
  • kernel-doc — Archivos de documentación del código fuente del kernel. Varias porciones del kernel de Linux y los manejadores de dispositivos distribuidos estos están documentados en esos archivos. La instalación de este paquete provee una referencia de las opciones que pueden ser entregadas al kernel de Linux en el momento del arranque del sistema.
    De forma predeifEstos archivos se encuentran endirectorio/usr/share/doc/kernel-doc-version_del_nucleo/ .
  • kernel-headers — Incluye los encabezados de los archivos C que especifica la interfaz entre el kernel de Linux y las librerías y programas del espacio del usuario. Los archivos de encabezado definen estructuras y constantes que son requeridas para construir la mayoría de los programas.
  • linux-firmware — Contiene todos los archivos del firmware requeridos por los distintos dispitivos.
  • perf — Este paquete contiene archivos de soporte scripts y documentacion para las herramientas en perf enviadas en la imagen y sub-paquetes del kernel.

21.2. Preparación para la actualización

Antes de actualizar el kernel, se recomienda que usted tome medidas de precaución.
Primero, este seguro de tener un soporte de almacenamiento (CD,DVD ó llave USB) con una imagen de arranque funcional en caso de que ocurran problemas. Si el sistema de arranque no esta configurado adecuadamente con el nuevo kernel, el sistema no puede arrancar Fedora sin un medio de arranque externo.
los dispositivos de almacenamiento USB vienen regularmente con memoria de tipo reutilizable(flash) conocidos también comopen drives, thumb disks, o llaves, o bien como dispositivo de almacenamiento externo. Casi todos los medios de este tipo estan formateados con formato VFAT. Usted puede crear un dispositivo de inicio con los siguientes formatos ext2, ext3, ext4, o VFAT.
Usted puede transferir una imagen de distribución o una imagen mínima de arranque a una unidad de almacenamiento USB. Asegúrese de tener suficiente espacio en el dispositivo. se requieren cerca de 4 GB para la imagen de distribución en DVD, cerca de 700 MB para la imagen en CD, o cerca de 100 MB para la imagen mínima de instalación en cualquier medio.
Usted debe tener una copia del archivo boot.iso del DVD de Fedorainstalación, o el CD-ROM#1, y se requiere un dispositivo de almacenamiento USB formateado con el formato VFAT y con mínimo de 16MB de espacio libre. EL siguiente procedimiento no afecta los archivos existentes en el dispositivo de almacenamiento USB a menos que contengan las mismas rutas que los archivos que usted va a copiar en el. Para crear un un dispositivo de almacenamiento USB de inicio, realice el siguiente comando root
  1. Instale la aplicación de arranque SYSLINUX en el dispositivo de almacenamiento USB:
    syslinux /dev/sdX1
    ...donde sdX es el nombre del dispositivo.
  2. Cree los puntos de montaje boot.iso y el dispositivo de almacenamiento USB:
    mkdir /mnt/isoboot /mnt/diskboot
  3. Monte boot.iso:
    mount -o loop boot.iso /mnt/isoboot
  4. Monte el dispositivo de almacenamiento USB:
    mount /dev/sdX1 /mnt/diskboot
  5. Copie los archivos de ISOLINUXdesde boot.iso al dispositivo de almacenamiento USB:
    cp /mnt/isoboot/isolinux/* /mnt/diskboot
  6. Utilice el archivo isolinux.cfg de boot.iso como el archivo syslinux.cfg en el dispositivo USB:
    grep -v local /mnt/isoboot/isolinux/isolinux.cfg > /mnt/diskboot/syslinux.cfg
  7. Desmonte boot.iso y el dispositivo de almacenamiento USB:
    umount /mnt/isoboot /mnt/diskboot
  8. Usted deberá reiniciar su equipo con el medio de arranque y asegurarse que el equipo puede efectivamente arrancar con el mismo antes de continuar.
En sistemas con unidades de disco flexible, usted puede crear un disco de inicio al instalar el paquete mkbootdisl y ejecutar la instrucción mkbootdisk como usuario root. Referiérase al commando man mkbootdisk para ver la pagina del manual con la información de utilización de este comando.
Para determinar que paquetes del kernel están instalados, ejecute el comando yum list installed "kernel-*" en la consola. La salida debería mostrar algunos de los siguientes paquetes dependiendo de la arquitectura de sus sistema, y los números de versión pueden variar:
~]# yum list installed "kernel-*"
Loaded plugins: langpacks, presto, refresh-packagekit
Installed Packages
kernel.x86_64            3.1.0-0.rc6.git0.3.fc16        @updates-testing
kernel.x86_64            3.1.0-0.rc9.git0.0.fc16        @updates-testing
kernel-doc.x86_64        3.1.0-0.rc6.git0.3.fc16        @updates-testing
kernel-doc.x86_64        3.1.0-0.rc9.git0.0.fc16        @updates-testing
kernel-headers.x86_64    3.1.0-0.rc6.git0.3.fc16        @updates-testing
kernel-headers.x86_64    3.1.0-0.rc9.git0.0.fc16        @updates-testing
A partir de esa información, determine que paquetes requieren ser bajados para realizar la actualización del kernel. Para un sistema de un solo procesador se requiere el paquete kernel. Para las descripciones de los diferentes paquetes refíerase a Sección 21.1, “Descripción general de los Paquetes del kernel”.

21.3. Descarga el Kernel actualizado

Hay varias maneras de saber si hay un kernel actualizado disponible para su sistema.
  • Avisos de Seguridad -- Para información acerca de los Avisos de Seguridad, incluyendo actualizaciones del núcleo que corrigen detalles de seguridad refiérase a http://fedoraproject.org/wiki/FSA.
  • Vía el Sistema de Actuialización de Fedora -- Descargar e instalar el paquete RPM del núcleo. Para mas información, referirse a http://admin.fedoraproject.org/updates/.
Para instalar el núcleo manualmente, continúe a Sección 21.4, “Realizando la actualización”.

21.4. Realizando la actualización

Después de obtener todos los paquetes necesarios, es hora de actualizar el kernel existente.

deje instalado el kernel anterior al realizar la actualización

Se recomienda no borrar el kernel anterior del sistema por si tiene problemas con el nuevo.
Uitilizando la consola, cámbiese al directorio que contiene el paquete RPM con el nuevo kernel. Use el argumento -i con la instrucción rpm para mantener el kernel anterior. No utilice la opción -U, ya que esta remplaza el kernel actual, lo que pudiera crear problemas con el sistema de arranque. \nPor ejemplo:
rpm -ivh kernel-kernel_version.arch.rpm 
La siguiente etapa es verificar que la imagen de disco inicial sea creada en la memoria RAM. Para mayor información refiérase a Sección 21.5, “Verificación de la imagen de disco RAM inicial”

21.5. Verificación de la imagen de disco RAM inicial

El trabajo de la imagen de disco RAM inicial es pre cargar los módulos de los dispositivos de bloque como los IDE, SCSI o RAID de manera tal que el sistema raíz, que se encuentra en estos módulos pueda ser localizado y montado. En los sistemas Fedora 17, cuando un kernel es instalado usando cualquier metodo de administración de paquetes como Yum, PackageKit, o RPM, la aplicación Dracut es siempre llamada por los scripts de instalación para crear una initramfs (imagen de disco RAM inicial)
En todas las arquitecturas que no sean la IBM eServer System i (vea Sección 21.5, “Verificando la Imagen de Disco RAM Inicial y el kernel en un IBM e Server System i ”), usted puede crear un initramfs al ejecutar la instrucción dracut. Sin embargo, usted no tiene que crear un initramfs de manera manual: este paso es realizado automáticamente si el kernel y los paquetes asociados a el son instalados o actualizados a partir de los paquetes RPM distribuidos por The Fedora Project.
On architectures that use the GRUB 2 boot loader, you can verify that an initramfs corresponding to your current kernel version exists and is specified correctly in the /boot/grub2/grub.cfg configuration file by following this procedure:
Procedimiento 21.1. Verificación de la imagen de disco RAM inicial
  1. En tanto que usuario root, liste el contenido del directorio /boot y encuentre la versión del kernel (vmlinuz-kernel_version) y initramfs-kernel_version que tenga el número de versión más recente:
    ~]# ls /boot
    config-3.1.0-0.rc6.git0.3.fc16.x86_64
    config-3.1.0-0.rc9.git0.0.fc16.x86_64
    elf-memtest86+-4.20
    grub
    grub2
    initramfs-3.1.0-0.rc6.git0.3.fc16.x86_64.img
    initramfs-3.1.0-0.rc9.git0.0.fc16.x86_64.img
    initrd-plymouth.img
    memtest86+-4.20
    System.map-3.1.0-0.rc6.git0.3.fc16.x86_64
    System.map-3.1.0-0.rc9.git0.0.fc16.x86_64
    vmlinuz-3.1.0-0.rc6.git0.3.fc16.x86_64
    vmlinuz-3.1.0-0.rc9.git0.0.fc16.x86_64
    El ejemplo anterior muestra que:
    • tenemos dos kernel instalados (o, mas precisamente, dos archivos kernel estan presentes en el directorio /boot),
    • el último kernel es vmlinuz-vmlinuz-3.1.0-0.rc9.git0.0.fc16.x86_64, y
    • y también existe un archivo initramfs que concuerda con nuestra versión del kernel initramfs-3.1.0-0.rc9.git0.0.fc16.x86_64.img.

    los archivos initrd del directorio /boot no son los mismos que los archivos initramfs

    En el directorio /boot puede encontrar varios archivos initrd-<kernel_version>kdump.img . Esos son archivos especiales creados por el mecanismo kdump para intenciones de d-puración del kernel, no son utlizados en el sistema de arranque y pueden ser ignorados con toda seguridad. Para más información acerca de kdump, refiérase a Capítulo 23, The kdump Crash Recovery Service.
  2. (Opcional) Si su archivo initramfs-kernel_version no coincide con la versión del último kernel que esta en /boot, o, en ciertas situaciones, usted puede que necesite generar un archivo initramfs con la herramienta Dracut . Invocando simplemente dracut como usuario root sin opciones, hace que se genere un archivo initramfs en el directorio /boot para el ultimo kernel presente en ese directorio:
    ~]# dracut
    Usted tiene que usar la opción --force si desea que dracut sobre escriba una imagen existente initramfs (por ejemplo, si su initramfs esta corrupto). De otra forma dracut rechazara sobre escribir una imagen existente initramfs :
    ~]# dracut
    F: No sustituira los initramfs (/boot/initramfs-3.1.0-0.rc9.git0.0.fc16.x86_64.img) existentes sin la opción --force
    Puede crear un initramfs en el directorio actual ejecutando dracut initramfs_name kernel_version, por ejemplo:
    ~]# dracut "initramfs-$(uname -r).img" $(uname -r)
    Si se requiere especificar módulos del kernel para ser pre cargados, escriba el nombre de los módulos (menos las extensiones de los archivos como .ko) dentro del paréntesis de add_dracutmodules="module [more_modules]" de la directiva del archivo de configuración /etc/dracut.conf. Usted tiene que listar los contenidos del archivo imagen initramfs creado por dracut usando la instrucción lsinitrd initramfs_file :
    ~]# lsinitrd /boot/initramfs-3.1.0-0.rc9.git0.0.fc16.x86_64.img
    /boot/initramfs-3.1.0-0.rc9.git0.0.fc16.x86_64.img: 16M
    ========================================================================
    dracut-013-15.fc16
    ========================================================================
    drwxr-xr-x   8 root     root     0 Oct 11 20:36 .
    lrwxrwxrwx   1 root     root    17 Oct 11 20:36 lib -> run/initramfs/lib
    drwxr-xr-x   2 root     root     0 Oct 11 20:36 sys
    drwxr-xr-x   2 root     root     0 Oct 11 20:36 proc
    lrwxrwxrwx   1 root     root    17 Oct 11 20:36 etc -> run/initramfs/etc
    [output truncated]
    Para mas información de las opciones y uso refiérase a man dracut y man dracut.conf .
  3. Examine the /boot/grub2/grub.cfg configuration file to ensure that an initrd /path/initramfs-kernel_version.img exists for the kernel version you are booting. For example:
    ~]# grep initrd /boot/grub2/grub.cfg
            initrd /initramfs-3.1.0-0.rc6.git0.3.fc16.x86_64.img
            initrd /initramfs-3.1.0-0.rc9.git0.0.fc16.x86_64.img
    Refer to Sección 21.6, “Configuración del gestor de arranque” for more information on how to read and update the /boot/grub2/grub.cfg file.

Verificando la Imagen de Disco RAM Inicial y el kernel en un IBM e Server System i

En equipos IBM eServer System i, el disco RAM inicial y los archivos del kernel están combinados en un solo archivo, el cual es creado con el comando addRamDisk . Este paso se realiza automaticamente si el kernel y sus paquetes asociados están instalados o actualizados a partir de los paquetes RPM distribuidos por The Fedora Project; de esta manera no necesitan ser ejecutados manualmente. Para comprobar que fué creado, emita el siguiente comando como usuario root para segurarse que el archivo /boot/vmlinitrd-kernel_version ya existe:
ls -l /boot
La version del kernel debe coincidir con la versión del kernel que se acaba de instalar.

21.6. Configuración del gestor de arranque

Cuan instale su kernel usando rpm, el paquete del kernel crea una entrada en el archivo de configuración del gestor de arranque para el nuevo kernel. Sin embargo rpm no puede configurar el nuevo kernel como el kernel predeterminado. Usted tendrá que realizar eso manualmente al instalar un nuevo kernel con el comando rpm
Se recomienda realizar una verificación doble del archivo de configuración del gestor de arranque, luego de instalar un nuevo kernel con la instrucción rpm para asegurarse que esta correcto. De otra manera, el sistema puede que no arranque Fedora adecuadamente. Si esto ocurre, inicie el sistema con el medio de arranque creado anteriormente y vuelva a configurar el gestor de arranque.
Busque en la siguiente tabla la arquitectura de su sistema para determinar el gestor de arranque adecuado para su arquitectura, haga clic en el enlace "Referirse a" para ir a las instrucciones adecuadas para su sistema.
Tabla 21.1. Arquitectura del gestor de arranque
Arquitectura Gestor de Arranque Refiérase a
x86 GRUB 2 Sección 21.6.1, “Configuring the GRUB 2 Boot Loader”
AMD AMD64 o Intel 64 GRUB 2 Sección 21.6.1, “Configuring the GRUB 2 Boot Loader”
IBM eServer System i OS/400 Sección 21.6.2, “Configurando el gestor de arranque del OS/400 ”
IBM eServer System p YABOOT Sección 21.6.3, “Configurando el gestor de arranque YABOOT”
IBM System z z/IPL

21.6.1. Configuring the GRUB 2 Boot Loader

Fedora 17 is distributed with GRUB 2, which reads its configuration from the /boot/grub2/grub.cfg file. This file is generated by the grub2-mkconfig utility based on Linux kernels located in the /boot directory, template files located in /etc/grub.d/, and custom settings in the /etc/default/grub file and is automatically updated each time you install a new kernel from an RPM package. To update this configuration file manually, type the following at a shell prompt as root:
grub2-mkconfig -o /boot/grub2/grub.cfg
Among various code snippets and directives, the /boot/grub2/grub.cfg configuration file contains one or more menuentry blocks, each representing a single GRUB 2 boot menu entry. These blocks always start with the menuentry keyword followed by a title, list of options, and opening curly bracket, and end with a closing curly bracket. Anything between the opening and closing bracket should be indented. For example, the following is a sample menuentry block for Fedora 17 with Linux kernel 3.4.0-1.fc17.x86_64:
menuentry 'Fedora (3.4.0-1.fc17.x86_64)' --class fedora --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-77ba9149-751a-48e0-974f-ad94911734b9' {
        load_video
        set gfxpayload=keep
        insmod gzio
        insmod part_msdos
        insmod ext2
        set root='hd0,msdos1'
        if [ x$feature_platform_search_hint = xy ]; then
          search --no-floppy --fs-uuid --set=root --hint='hd0,msdos1'  4ea24c68-ab10-47d4-8a6b-b8d3a002acba
        else
          search --no-floppy --fs-uuid --set=root 4ea24c68-ab10-47d4-8a6b-b8d3a002acba
        fi
        echo 'Loading Fedora (3.4.0-1.fc17.x86_64)'
        linux   /vmlinuz-3.4.0-1.fc17.x86_64 root=/dev/mapper/vg_fedora-lv_root ro rd.md=0 rd.dm=0 SYSFONT=True rd.lvm.lv=vg_fedora/lv_swap  KEYTABLE=us rd.lvm.lv=vg_fedora/lv_root rd.luks=0 LANG=en_US.UTF-8 rhgb quiet
        echo 'Loading initial ramdisk ...'
        initrd /initramfs-3.4.0-1.fc17.x86_64.img
}
Each menuentry block that represents an installed Linux kernel contains linux and initrd directives followed by the path to the kernel and the initramfs image respectively. If a separate /boot partition was created, the paths to the kernel and the initramfs image are relative to /boot. In the example above, the initrd /initramfs-3.4.0-1.fc17.x86_64.img line means that the initramfs image is actually located at /boot/initramfs-3.4.0-1.fc17.x86_64.img when the root file system is mounted, and likewise for the kernel path.
The kernel version number as given on the linux /vmlinuz-kernel_version line must match the version number of the initramfs image given on the initrd /initramfs-kernel_version.img line of each menuentry block. For more information on how to verify the initial RAM disk image, refer to Procedimiento 21.1, “Verificación de la imagen de disco RAM inicial”.

The initrd directive in grub.cfg refers to an initramfs image

In menuentry blocks, the initrd directive must point to the location (relative to the /boot directory if it is on a separate partition) of the initramfs file corresponding to the same kernel version. This directive is called initrd because the previous tool which created initial RAM disk images, mkinitrd, created what were known as initrd files. The grub.cfg directive remains initrd to maintain compatibility with other tools. The file-naming convention of systems using the dracut utility to create the initial RAM disk image is initramfs-kernel_version.img.
After installing a new kernel with rpm, verify that /boot/grub2/grub.cfg is correct and reboot the computer into the new kernel. Ensure your hardware is detected by watching the boot process output. If GRUB 2 presents an error and is unable to boot into the new kernel, it is often easiest to try to boot into an alternative or older kernel so that you can fix the problem. Alternatively, use the boot media you created earlier to boot the system.

Causing the GRUB 2 boot menu to display

If you set the GRUB_TIMEOUT option in the /etc/default/grub file to 0, GRUB 2 will not display its list of bootable kernels when the system starts up. In order to display this list when booting, press and hold any alphanumeric key while and immediately after BIOS information is displayed, and GRUB 2 will present you with the GRUB menu.

21.6.2. Configurando el gestor de arranque del OS/400

El archivo /boot/vmlinitrd-kernel'version es instalado cuando usted actualiza el kernel. Sin embargo, usted debe utilizar el comando dd para indicarle al sistema que debe arrancar con el nuevo kernel.
  1. Utilizando el usuario root, ejecute la instruccion cat /proc/iSeries/mf/side para determinar el sitio pre determinado (puede ser A, B, o C).
  2. Utilizando el usuario root, ejecute la siguiente instrucción, donde kernel-version es la versión del nuevo kernel y remplácelos por side donde side es el resultado del comando anterior:
    dd if=/boot/vmlinitrd-kernel-version of=/proc/iSeries/mf/side/vmlinux bs=8k
Comience evaluando el nuevo kernel, reiniciando el computador y vigilando los mensajes para asegurarse de que el equipo es detectado adecuadamente.

21.6.3. Configurando el gestor de arranque YABOOT

El Servidor IBM eServer System p usa YABOOT como su gestor de arranque. YABOOT usa como archivo de configuración el /etc/aboot.conf. Confirme que el archivo de configuración contenga una sección de imagen con la misma versión del kernel que se instala, y de igual forma para la imagen initramfs
boot=/dev/sda1 init-message=Welcome to Fedora! Hit <TAB> for boot options
partition=2 timeout=30 install=/usr/lib/yaboot/yaboot delay=10 nonvram
image=/vmlinuz-2.6.32-17.EL
	 label=old
	 read-only
	 initrd=/initramfs-2.6.32-17.EL.img
	 append="root=LABEL=/"
image=/vmlinuz-2.6.32-19.EL
	 label=linux
	 read-only
	 initrd=/initramfs-2.6.32-19.EL.img
	 append="root=LABEL=/"
Observar que la configuración por defecto no esta configurada para el nuevo kernel. Para cambiar el kernel predeterminado en el arranque puede mover la imagen nueva de forma que sea la primera de lista o adicione la directiva default y configure label con la imagen que contiene el nuevo kernel.
Comience evaluando el nuevo kernel, reiniciando el computador y vigilando los mensajes para asegurarse de que el equipo es detectado adecuadamente.

Capítulo 22. Working with Kernel Modules

The Linux kernel is modular, which means it can extend its capabilities through the use of dynamically-loaded kernel modules. A kernel module can provide:
  • a device driver which adds support for new hardware; or,
  • support for a file system such as btrfs or NFS.
Like the kernel itself, modules can take parameters that customize their behavior, though the default parameters work well in most cases. User-space tools can list the modules currently loaded into a running kernel; query all available modules for available parameters and module-specific information; and load or unload (remove) modules dynamically into or from a running kernel. Many of these utilities, which are provided by the module-init-tools package, take module dependencies into account when performing operations so that manual dependency-tracking is rarely necessary.
On modern systems, kernel modules are automatically loaded by various mechanisms when the conditions call for it. However, there are occasions when it is necessary to load and/or unload modules manually, such as when a module provides optional functionality, one module should be preferred over another although either could provide basic functionality, or when a module is misbehaving, among other situations.
This chapter explains how to:
  • use the user-space module-init-tools package to display, query, load and unload kernel modules and their dependencies;
  • set module parameters both dynamically on the command line and permanently so that you can customize the behavior of your kernel modules; and,
  • load modules at boot time.

Installing the module-init-tools package

In order to use the kernel module utilities described in this chapter, first ensure the module-init-tools package is installed on your system by running, as root:
yum install module-init-tools
For more information on installing packages with Yum, refer to Sección 4.2.4, “Installing Packages”.

22.1. Listing Currently-Loaded Modules

You can list all kernel modules that are currently loaded into the kernel by running the lsmod command, for example:
~]$ lsmod
Module                  Size  Used by
xfs                   803635  1
exportfs                3424  1 xfs
vfat                    8216  1
fat                    43410  1 vfat
tun                    13014  2
fuse                   54749  2
ip6table_filter         2743  0
ip6_tables             16558  1 ip6table_filter
ebtable_nat             1895  0
ebtables               15186  1 ebtable_nat
ipt_MASQUERADE          2208  6
iptable_nat             5420  1
nf_nat                 19059  2 ipt_MASQUERADE,iptable_nat
rfcomm                 65122  4
ipv6                  267017  33
sco                    16204  2
bridge                 45753  0
stp                     1887  1 bridge
llc                     4557  2 bridge,stp
bnep                   15121  2
l2cap                  45185  16 rfcomm,bnep
cpufreq_ondemand        8420  2
acpi_cpufreq            7493  1
freq_table              3851  2 cpufreq_ondemand,acpi_cpufreq
usb_storage            44536  1
sha256_generic         10023  2
aes_x86_64              7654  5
aes_generic            27012  1 aes_x86_64
cbc                     2793  1
dm_crypt               10930  1
kvm_intel              40311  0
kvm                   253162  1 kvm_intel
[output truncated]
Each row of lsmod output specifies:
  • the name of a kernel module currently loaded in memory;
  • the amount of memory it uses; and,
  • the sum total of processes that are using the module and other modules which depend on it, followed by a list of the names of those modules, if there are any. Using this list, you can first unload all the modules depending the module you want to unload. For more information, refer to Sección 22.4, “Unloading a Module”.
Finally, note that lsmod output is less verbose and considerably easier to read than the content of the /proc/modules pseudo-file.

22.2. Displaying Information About a Module

You can display detailed information about a kernel module by running the modinfo module_name command.

Module names do not end in .ko

When entering the name of a kernel module as an argument to one of the module-init-tools utilities, do not append a .ko extension to the end of the name. Kernel module names do not have extensions: their corresponding files do.
Ejemplo 22.1. Listing information about a kernel module with lsmod
To display information about the e1000e module, which is the Intel PRO/1000 network driver, run:
~]# modinfo e1000e
filename:       /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/net/e1000e/e1000e.ko
version:        1.2.7-k2
license:        GPL
description:    Intel(R) PRO/1000 Network Driver
author:         Intel Corporation, <linux.nics@intel.com>
srcversion:     93CB73D3995B501872B2982
alias:          pci:v00008086d00001503sv*sd*bc*sc*i*
alias:          pci:v00008086d00001502sv*sd*bc*sc*i*
[some alias lines omitted]
alias:          pci:v00008086d0000105Esv*sd*bc*sc*i*
depends:
vermagic:       2.6.32-71.el6.x86_64 SMP mod_unload modversions
parm:           copybreak:Maximum size of packet that is copied to a new buffer on receive (uint)
parm:           TxIntDelay:Transmit Interrupt Delay (array of int)
parm:           TxAbsIntDelay:Transmit Absolute Interrupt Delay (array of int)
parm:           RxIntDelay:Receive Interrupt Delay (array of int)
parm:           RxAbsIntDelay:Receive Absolute Interrupt Delay (array of int)
parm:           InterruptThrottleRate:Interrupt Throttling Rate (array of int)
parm:           IntMode:Interrupt Mode (array of int)
parm:           SmartPowerDownEnable:Enable PHY smart power down (array of int)
parm:           KumeranLockLoss:Enable Kumeran lock loss workaround (array of int)
parm:           WriteProtectNVM:Write-protect NVM [WARNING: disabling this can lead to corrupted NVM] (array of int)
parm:           CrcStripping:Enable CRC Stripping, disable if your BMC needs the CRC (array of int)
parm:           EEE:Enable/disable on parts that support the feature (array of int)

Here are descriptions of a few of the fields in modinfo output:
filename
The absolute path to the .ko kernel object file. You can use modinfo -n as a shortcut command for printing only the filename field.
description
A short description of the module. You can use modinfo -d as a shortcut command for printing only the description field.
alias
The alias field appears as many times as there are aliases for a module, or is omitted entirely if there are none.
depends
This field contains a comma-separated list of all the modules this module depends on.

Omitting the depends field

If a module has no dependencies, the depends field may be omitted from the output.
parm
Each parm field presents one module parameter in the form parameter_name:description, where:
  • parameter_name is the exact syntax you should use when using it as a module parameter on the command line, or in an option line in a .conf file in the /etc/modprobe.d/ directory; and,
  • description is a brief explanation of what the parameter does, along with an expectation for the type of value the parameter accepts (such as int, unit or array of int) in parentheses.
Ejemplo 22.2. Listing module parameters
You can list all parameters that the module supports by using the -p option. However, because useful value type information is omitted from modinfo -p output, it is more useful to run:
~]# modinfo e1000e | grep "^parm" | sort
parm:           copybreak:Maximum size of packet that is copied to a new buffer on receive (uint)
parm:           CrcStripping:Enable CRC Stripping, disable if your BMC needs the CRC (array of int)
parm:           EEE:Enable/disable on parts that support the feature (array of int)
parm:           InterruptThrottleRate:Interrupt Throttling Rate (array of int)
parm:           IntMode:Interrupt Mode (array of int)
parm:           KumeranLockLoss:Enable Kumeran lock loss workaround (array of int)
parm:           RxAbsIntDelay:Receive Absolute Interrupt Delay (array of int)
parm:           RxIntDelay:Receive Interrupt Delay (array of int)
parm:           SmartPowerDownEnable:Enable PHY smart power down (array of int)
parm:           TxAbsIntDelay:Transmit Absolute Interrupt Delay (array of int)
parm:           TxIntDelay:Transmit Interrupt Delay (array of int)
parm:           WriteProtectNVM:Write-protect NVM [WARNING: disabling this can lead to corrupted NVM] (array of int)

22.3. Loading a Module

To load a kernel module, run modprobe module_name as root. For example, to load the wacom module, run:
~]# modprobe wacom
By default, modprobe attempts to load the module from /lib/modules/kernel_version/kernel/drivers/. In this directory, each type of module has its own subdirectory, such as net/ and scsi/, for network and SCSI interface drivers respectively.
Some modules have dependencies, which are other kernel modules that must be loaded before the module in question can be loaded. The modprobe command always takes dependencies into account when performing operations. When you ask modprobe to load a specific kernel module, it first examines the dependencies of that module, if there are any, and loads them if they are not already loaded into the kernel. modprobe resolves dependencies recursively: it will load all dependencies of dependencies, and so on, if necessary, thus ensuring that all dependencies are always met.
You can use the -v (or --verbose) option to cause modprobe to display detailed information about what it is doing, which may include loading module dependencies.
Ejemplo 22.3. modprobe -v shows module dependencies as they are loaded
You can load the Fibre Channel over Ethernet module verbosely by typing the following at a shell prompt:
~]# modprobe -v fcoe
insmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/scsi/scsi_tgt.ko
insmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/scsi/scsi_transport_fc.ko
insmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/scsi/libfc/libfc.ko
insmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/scsi/fcoe/libfcoe.ko
insmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/scsi/fcoe/fcoe.ko
In this example, you can see that modprobe loaded the scsi_tgt, scsi_transport_fc, libfc and libfcoe modules as dependencies before finally loading fcoe. Also note that modprobe used the more primitive insmod command to insert the modules into the running kernel.

Always use modprobe instead of insmod!

Although the insmod command can also be used to load kernel modules, it does not resolve dependencies. Because of this, you should always load modules using modprobe instead.

22.4. Unloading a Module

You can unload a kernel module by running modprobe -r module_name as root. For example, assuming that the wacom module is already loaded into the kernel, you can unload it by running:
~]# modprobe -r wacom
However, this command will fail if a process is using:
  • the wacom module,
  • a module that wacom directly depends on, or,
  • any module that wacom—through the dependency tree—depends on indirectly.
Refer to Sección 22.1, “Listing Currently-Loaded Modules” for more information about using lsmod to obtain the names of the modules which are preventing you from unloading a certain module.
Ejemplo 22.4. Unloading a kernel module
For example, if you want to unload the firewire_ohci module (because you believe there is a bug in it that is affecting system stability, for example), your terminal session might look similar to this:
~]# modinfo -F depends firewire_ohci
depends:        firewire-core
~]# modinfo -F depends firewire_core
depends:        crc-itu-t
~]# modinfo -F depends crc-itu-t
depends:
You have figured out the dependency tree (which does not branch in this example) for the loaded Firewire modules: firewire_ohci depends on firewire_core, which itself depends on crc-itu-t.
You can unload firewire_ohci using the modprobe -v -r module_name command, where -r is short for --remove and -v for --verbose:
~]# modprobe -r -v firewire_ohci
rmmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/firewire/firewire-ohci.ko
rmmod /lib/modules/2.6.32-71.el6.x86_64/kernel/drivers/firewire/firewire-core.ko
rmmod /lib/modules/2.6.32-71.el6.x86_64/kernel/lib/crc-itu-t.ko
The output shows that modules are unloaded in the reverse order that they are loaded, given that no processes depend on any of the modules being unloaded.

Do not use rmmod directly!

Although the rmmod command can be used to unload kernel modules, it is recommended to use modprobe -r instead.

22.5. Setting Module Parameters

Like the kernel itself, modules can also take parameters that change their behavior. Most of the time, the default ones work well, but occasionally it is necessary or desirable to set custom parameters for a module. Because parameters cannot be dynamically set for a module that is already loaded into a running kernel, there are two different methods for setting them.
  1. You can unload all dependencies of the module you want to set parameters for, unload the module using modprobe -r, and then load it with modprobe along with a list of customized parameters. This method is often used when the module does not have many dependencies, or to test different combinations of parameters without making them persistent, and is the method covered in this section.
  2. Alternatively, you can list the new parameters in an existing or newly-created file in the /etc/modprobe.d/ directory. This method makes the module parameters persistent by ensuring that they are set each time the module is loaded, such as after every reboot or modprobe command. This method is covered in Sección 22.6, “Carga Persistente de Módulos”, though the following information is a prerequisite.
You can use modprobe to load a kernel module with custom parameters using the following command line format:
modprobe module_name [parameter=value]
When loading a module with custom parameters on the command line, be aware of the following:
  • You can enter multiple parameters and values by separating them with spaces.
  • Some module parameters expect a list of comma-separated values as their argument. When entering the list of values, do not insert a space after each comma, or modprobe will incorrectly interpret the values following spaces as additional parameters.
  • The modprobe command silently succeeds with an exit status of 0 if:
    • it successfully loads the module, or
    • the module is already loaded into the kernel.
    Thus, you must ensure that the module is not already loaded before attempting to load it with custom parameters. The modprobe command does not automatically reload the module, or alert you that it is already loaded.
Here are the recommended steps for setting custom parameters and then loading a kernel module. This procedure illustrates the steps using the e1000e module, which is the network driver for Intel PRO/1000 network adapters, as an example:
Procedimiento 22.1. Loading a Kernel Module with Custom Parameters
  1. First, ensure the module is not already loaded into the kernel. For example:
    ~]# lsmod | grep e1000e
    ~]# 
    Output indicates that the module is already loaded into the kernel, in which case you must first unload it before proceeding. Refer to Sección 22.4, “Unloading a Module” for instructions on safely unloading it.
  2. Load the module and list all custom parameters after the module name. For example, if you wanted to load the Intel PRO/1000 network driver with the interrupt throttle rate set to 3000 interrupts per second for the first, second and third instances of the driver, and Energy Efficient Ethernet (EEE) turned on[3] , you would run, as root:
    ~]# modprobe e1000e InterruptThrottleRate=3000,3000,3000 EEE=1
    This example illustrates passing multiple valued to a single parameter by separating them with commas and omitting any spaces between them.

22.6. Carga Persistente de Módulos

As shown in Ejemplo 22.1, “Listing information about a kernel module with lsmod”, many kernel modules are loaded automatically at boot time. You can specify additional modules to be loaded by creating a new file_name.modules file in the /etc/sysconfig/modules/ directory, where file_name is any descriptive name of your choice. Your file_name.modules files are treated by the system startup scripts as shell scripts, and as such should begin with an interpreter directive (also called a bang line) as their first line:
#!/bin/sh
Additionally, the file_name.modules file should be executable. You can make it executable by running:
modules]# chmod +x file_name.modules
Ejemplo 22.5. /etc/sysconfig/modules/bluez-uinput.modules
The following bluez-uinput.modules script loads the uinput module:
#!/bin/sh

if [ ! -c /dev/input/uinput ] ; then
        exec /sbin/modprobe uinput >/dev/null 2>&1
fi
The if-conditional statement on the third line ensures that the /dev/input/uinput file does not already exist (the ! symbol negates the condition), and, if that is the case, loads the uinput module by calling exec /sbin/modprobe uinput. Note that the uinput module creates the /dev/input/uinput file, so testing to see if that file exists serves as verification of whether the uinput module is loaded into the kernel.
The following >/dev/null 2>&1 clause at the end of that line redirects any output to /dev/null so that the modprobe command remains quiet.

22.7. Specific Kernel Module Capabilities

This section explains how to enable specific kernel capabilities using various kernel modules.

22.7.1. Utilización de Múltiples Tarjetas Ethernet

It is possible to use multiple Ethernet cards on a single machine. For each card there must be an alias and, possibly, options lines for each card in a user-created module_name.conf file in the /etc/modprobe.d/ directory.
Para información adicional sobre el uso de más de una tarjeta Ethernet, consulte el Linux Ethernet-HOWTO online at http://www.redhat.com/mirrors/LDP/HOWTO/Ethernet-HOWTO.html.

22.7.2. Using Channel Bonding

Fedora allows administrators to bind NICs together into a single channel using the bonding kernel module and a special network interface, called a channel bonding interface. Channel bonding enables two or more network interfaces to act as one, simultaneously increasing the bandwidth and providing redundancy.
Para enlazar varias interfaces de red en un canal, el administrador debe seguir los pasos siguientes:
  1. As root, create a new file named bonding.conf in the /etc/modprobe.d/ directory. Note that you can name this file anything you like as long as it ends with a .conf extension. Insert the following line in this new file:
    alias bondN bonding
    Replace N with the interface number, such as 0. For each configured channel bonding interface, there must be a corresponding entry in your new /etc/modprobe.d/bonding.conf file.
  2. Configure a channel bonding interface as outlined in Sección 7.2.2, “Interfaces de unión de canales”.
  3. To enhance performance, adjust available module options to ascertain what combination works best. Pay particular attention to the miimon or arp_interval and the arp_ip_target parameters. Refer to Sección 22.7.2.1, “Bonding Module Directives” for a list of available options and how to quickly determine the best ones for your bonded interface.

22.7.2.1. Bonding Module Directives

It is a good idea to test which channel bonding module parameters work best for your bonded interfaces before adding them to the BONDING_OPTS="bonding parameters" directive in your bonding interface configuration file (ifcfg-bond0 for example). Parameters to bonded interfaces can be configured without unloading (and reloading) the bonding module by manipulating files in the sysfs file system.
sysfs is a virtual file system that represents kernel objects as directories, files and symbolic links. sysfs can be used to query for information about kernel objects, and can also manipulate those objects through the use of normal file system commands. The sysfs virtual file system has a line in /etc/fstab, and is mounted under the /sys/ directory. All bonding interfaces can be configured dynamically by interacting with and manipulating files under the /sys/class/net/ directory.
In order to determine the best parameters for your bonding interface, create a channel bonding interface file such as ifcfg-bond0 by following the instructions in Sección 7.2.2, “Interfaces de unión de canales”. Insert the SLAVE=yes and MASTER=bond0 directives in the configuration files for each interface bonded to bond0. Once this is completed, you can proceed to testing the parameters.
First, bring up the bond you created by running ifconfig bondN up as root:
~]# ifconfig bond0 up
If you have correctly created the ifcfg-bond0 bonding interface file, you will be able to see bond0 listed in the output of running ifconfig (without any options):
~]# ifconfig
bond0     Link encap:Ethernet HWaddr 00:00:00:00:00:00
          UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)
eth0      Link encap:Ethernet  HWaddr 52:54:00:26:9E:F1
          inet addr:192.168.122.251  Bcast:192.168.122.255  Mask:255.255.255.0
          inet6 addr: fe80::5054:ff:fe26:9ef1/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:207 errors:0 dropped:0 overruns:0 frame:0
          TX packets:205 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:70374 (68.7 KiB)  TX bytes:25298 (24.7 KiB)
[output truncated]
To view all existing bonds, even if they are not up, run:
~]# cat /sys/class/net/bonding_masters
bond0
You can configure each bond individually by manipulating the files located in the /sys/class/net/bondN/bonding/ directory. First, the bond you are configuring must be taken down:
~]# ifconfig bond0 down
As an example, to enable MII monitoring on bond0 with a 1 second interval, you could run (as root):
~]# echo 1000 > /sys/class/net/bond0/bonding/miimon
To configure bond0 for balance-alb mode, you could run either:
~]# echo 6 > /sys/class/net/bond0/bonding/mode
...or, using the name of the mode:
~]# echo balance-alb > /sys/class/net/bond0/bonding/mode
After configuring options for the bond in question, you can bring it up and test it by running ifconfig bondN up . If you decide to change the options, take the interface down, modify its parameters using sysfs, bring it back up, and re-test.
Once you have determined the best set of parameters for your bond, add those parameters as a space-separated list to the BONDING_OPTS= directive of the /etc/sysconfig/network-scripts/ifcfg-bondN file for the bonding interface you are configuring. Whenever that bond is brought up (for example, by the system during the boot sequence if the ONBOOT=yes directive is set), the bonding options specified in the BONDING_OPTS will take effect for that bond. For more information on configuring bonding interfaces (and BONDING_OPTS), refer to Sección 7.2.2, “Interfaces de unión de canales”.
The following list provides the names of many of the more common channel bonding parameters, along with a descriptions of what they do. For more information, refer to the brief descriptions for each parm in modinfo bonding output, or the exhaustive descriptions in the bonding.txt file in the kernel-doc package (see Sección 22.8, “Recursos adicionales”).
Bonding Interface Parameters
arp_interval=time_in_milliseconds
Specifies (in milliseconds) how often ARP monitoring occurs.

Make sure you specify all required parameters

It is essential that both arp_interval and arp_ip_target parameters are specified, or, alternatively, the miimon parameter is specified. Failure to do so can cause degradation of network performance in the event that a link fails.
If using this setting while in mode=0 or mode=1 (the two load-balancing modes), the network switch must be configured to distribute packets evenly across the NICs. For more information on how to accomplish this, refer to /usr/share/doc/kernel-doc-kernel_version/Documentation/networking/bonding.txt
The value is set to 0 by default, which disables it.
arp_ip_target=ip_address[,ip_address_2,…ip_address_16]
Specifies the target IP address of ARP requests when the arp_interval parameter is enabled. Up to 16 IP addresses can be specified in a comma separated list.
arp_validate=value
Validate source/distribution of ARP probes; default is none. Other valid values are active, backup, and all.
debug=number
Enables debug messages. Possible values are:
  • 0 — Debug messages are disabled. This is the default.
  • 1 — Debug messages are enabled.
downdelay=time_in_milliseconds
Specifies (in milliseconds) how long to wait after link failure before disabling the link. The value must be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which disables it.
lacp_rate=value
Specifies the rate at which link partners should transmit LACPDU packets in 802.3ad mode. Possible values are:
  • slow or 0 — Default setting. This specifies that partners should transmit LACPDUs every 30 seconds.
  • fast or 1 — Specifies that partners should transmit LACPDUs every 1 second.
miimon=time_in_milliseconds
Specifies (in milliseconds) how often MII link monitoring occurs. This is useful if high availability is required because MII is used to verify that the NIC is active. To verify that the driver for a particular NIC supports the MII tool, type the following command as root:
~]# ethtool interface_name | grep "Link detected:"
In this command, replace interface_name with the name of the device interface, such as eth0, not the bond interface. If MII is supported, the command returns:
Enlace detectado: sí
If using a bonded interface for high availability, the module for each NIC must support MII. Setting the value to 0 (the default), turns this feature off. When configuring this setting, a good starting point for this parameter is 100.

Make sure you specify all required parameters

It is essential that both arp_interval and arp_ip_target parameters are specified, or, alternatively, the miimon parameter is specified. Failure to do so can cause degradation of network performance in the event that a link fails.
mode=value
Allows you to specify the bonding policy. The value can be one of:
  • balance-rr or 0 — Sets a round-robin policy for fault tolerance and load balancing. Transmissions are received and sent out sequentially on each bonded slave interface beginning with the first one available.
  • active-backup or 1 — Sets an active-backup policy for fault tolerance. Transmissions are received and sent out via the first available bonded slave interface. Another bonded slave interface is only used if the active bonded slave interface fails.
  • balance-xor or 2 — Sets an XOR (exclusive-or) policy for fault tolerance and load balancing. Using this method, the interface matches up the incoming request's MAC address with the MAC address for one of the slave NICs. Once this link is established, transmissions are sent out sequentially beginning with the first available interface.
  • broadcast or 3 — Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces.
  • 802.3ad or 4 — Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all slaves in the active aggregator. Requires a switch that is 802.3ad compliant.
  • balance-tlb or 5 — Sets a Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The outgoing traffic is distributed according to the current load on each slave interface. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed slave.
  • balance-alb or 6 — Sets an Active Load Balancing (ALB) policy for fault tolerance and load balancing. Includes transmit and receive load balancing for IPV4 traffic. Receive load balancing is achieved through ARP negotiation.
num_unsol_na=number
Specifies the number of unsolicited IPv6 Neighbor Advertisements to be issued after a failover event. One unsolicited NA is issued immediately after the failover.
The valid range is 0 - 255; the default value is 1. This parameter affects only the active-backup mode.
primary=interface_name
Specifies the interface name, such as eth0, of the primary device. The primary device is the first of the bonding interfaces to be used and is not abandoned unless it fails. This setting is particularly useful when one NIC in the bonding interface is faster and, therefore, able to handle a bigger load.
This setting is only valid when the bonding interface is in active-backup mode. Refer to /usr/share/doc/kernel-doc-kernel-version/Documentation/networking/bonding.txt for more information.
primary_reselect=value
Specifies the reselection policy for the primary slave. This affects how the primary slave is chosen to become the active slave when failure of the active slave or recovery of the primary slave occurs. This parameter is designed to prevent flip-flopping between the primary slave and other slaves. Possible values are:
  • always or 0 (default) — The primary slave becomes the active slave whenever it comes back up.
  • better or 1 — The primary slave becomes the active slave when it comes back up, if the speed and duplex of the primary slave is better than the speed and duplex of the current active slave.
  • failure or 2 — The primary slave becomes the active slave only if the current active slave fails and the primary slave is up.
The primary_reselect setting is ignored in two cases:
  • If no slaves are active, the first slave to recover is made the active slave.
  • When initially enslaved, the primary slave is always made the active slave.
Changing the primary_reselect policy via sysfs will cause an immediate selection of the best active slave according to the new policy. This may or may not result in a change of the active slave, depending upon the circumstances
updelay=time_in_milliseconds
Specifies (in milliseconds) how long to wait before enabling a link. The value must be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which disables it.
use_carrier=number
Specifies whether or not miimon should use MII/ETHTOOL ioctls or netif_carrier_ok() to determine the link state. The netif_carrier_ok() function relies on the device driver to maintains its state with netif_carrier_on/off ; most device drivers support this function.
The MII/ETHROOL ioctls tools utilize a deprecated calling sequence within the kernel. However, this is still configurable in case your device driver does not support netif_carrier_on/off .
Valid values are:
  • 1 — Default setting. Enables the use of netif_carrier_ok().
  • 0 — Enables the use of MII/ETHTOOL ioctls.

Nota

If the bonding interface insists that the link is up when it should not be, it is possible that your network device driver does not support netif_carrier_on/off.
xmit_hash_policy=value
Selects the transmit hash policy used for slave selection in balance-xor and 802.3ad modes. Possible values are:
  • 0 or layer2 — Default setting. This parameter uses the XOR of hardware MAC addresses to generate the hash. The formula used is:
    (source_MAC_address XOR destination_MAC) MODULO slave_count
    
    This algorithm will place all traffic to a particular network peer on the same slave, and is 802.3ad compliant.
  • 1 or layer3+4 — Uses upper layer protocol information (when available) to generate the hash. This allows for traffic to a particular network peer to span multiple slaves, although a single connection will not span multiple slaves.
    The formula for unfragmented TCP and UDP packets used is:
    ((source_port XOR dest_port) XOR
      ((source_IP XOR dest_IP) AND 0xffff)
        MODULO slave_count
    
    For fragmented TCP or UDP packets and all other IP protocol traffic, the source and destination port information is omitted. For non-IP traffic, the formula is the same as the layer2 transmit hash policy.
    This policy intends to mimic the behavior of certain switches; particularly, Cisco switches with PFC2 as well as some Foundry and IBM products.
    The algorithm used by this policy is not 802.3ad compliant.
  • 2 or layer2+3 — Uses a combination of layer2 and layer3 protocol information to generate the hash.
    Uses XOR of hardware MAC addresses and IP addresses to generate the hash. The formula is:
    (((source_IP XOR dest_IP) AND 0xffff) XOR
      ( source_MAC XOR destination_MAC ))
        MODULO slave_count
    
    This algorithm will place all traffic to a particular network peer on the same slave. For non-IP traffic, the formula is the same as for the layer2 transmit hash policy.
    This policy is intended to provide a more balanced distribution of traffic than layer2 alone, especially in environments where a layer3 gateway device is required to reach most destinations.
    This algorithm is 802.3ad compliant.

22.8. Recursos adicionales

Para más información en los módulos del kernel y sus utilidades, remítase a las siguientes fuentes de información.

22.8.1. Documentación instalada

There is a number of manual pages for various utilities related to the kernel modules:
man lsmod
The manual page for the lsmod command.
man modinfo
The manual page for the modinfo command.
man modprobe
The manual page for the modprobe command.
man rmmod
The manual page for the rmmod command.
man ethtool
The manual page for the ethtool command.
man mii-tool
The manual page for the mii-tool command.
Additionally, you can refer to the documentation provided by the kernel-doc package:
/usr/share/doc/kernel-doc-kernel_version/Documentation/
This directory contains information on the kernel, kernel modules, and their respective parameters. Note that before accessing the kernel documentation, you must run the following command as root:
yum install kernel-doc

22.8.2. Sitios Web útiles

Linux Loadable Kernel Module HOWTO
The Linux Loadable Kernel Module HOWTO from the Linux Documentation Project contains further information on working with kernel modules.


[3] Despite what the example might imply, Energy Efficient Ethernet is turned on by default in the e1000e driver.

Capítulo 23. The kdump Crash Recovery Service

When the kdump crash dumping mechanism is enabled, the system is booted from the context of another kernel. This second kernel reserves a small amount of memory and its only purpose is to capture the core dump image in case the system crashes.
Being able to analyze the core dump significantly helps to determine the exact cause of the system failure, and it is therefore strongly recommended to have this feature enabled. This chapter explains how to configure, test, and use the kdump service in Fedora, and provides a brief overview of how to analyze the resulting core dump using the crash debugging utility.

23.1. Installing the kdump Service

In order use the kdump service on your system, make sure you have the kexec-tools package installed. To do so, type the following at a shell prompt as root:
yum install kexec-tools
For more information on how to install new packages in Fedora, refer to Sección 4.2.4, “Installing Packages”.

23.2. Configuring the kdump Service

There are three common means of configuring the kdump service: at the first boot, using the Kernel Dump Configuration graphical utility, and doing so manually on the command line.

Disable IOMMU on Intel chipsets

A limitation in the current implementation of the Intel IOMMU driver can occasionally prevent the kdump service from capturing the core dump image. To use kdump on Intel architectures reliably, it is advised that the IOMMU support is disabled.

23.2.1. Configuring the kdump at First Boot

When the system boots for the first time, the firstboot application is launched to guide the user through the initial configuration of the freshly installed system. To configure kdump, navigate to the Kdump section and follow the instructions below.

Make sure the system has enough memory

Unless the system has enough memory, this option will not be available. For the information on minimum memory requirements, refer to the Hardware Overview section of the Fedora 17 Release Notes. When the kdump crash recovery is enabled, the minimum memory requirements increase by the amount of memory reserved for it. This value is determined by the user, and defaults to 128 MB plus 64 MB for each TB of physical memory (that is, a total of 192 MB for a system with 1 TB of physical memory).

23.2.1.1. Enabling the Service

To allow the kdump daemon to start at boot time, select the Enable kdump? checkbox. This will enable the service and start it for the current session. Similarly, unselecting the checkbox will disable it for and stop the service immediately.

23.2.1.2. Configuring the Memory Usage

To configure the amount of memory that is reserved for the kdump kernel, click the up and down arrow buttons next to the Kdump Memory field to increase or decrease the value. Notice that the Usable System Memory field changes accordingly showing you the remaining memory that will be available to the system.

23.2.2. Using the Kernel Dump Configuration Utility

To start the Kernel Dump Configuration utility, select ApplicationsOtherKernel crash dumps from the Activities menu, or type system-config-kdump at a shell prompt. You will be presented with a window as shown in Figura 23.1, “Basic Settings”.
The utility allows you to configure kdump as well as to enable or disable starting the service at boot time. When you are done, click Apply to save the changes. The system reboot will be requested, and unless you are already authenticated, you will be prompted to enter the superuser password.

Make sure the system has enough memory

Unless the system has enough memory, this option will not be available. For the information on minimum memory requirements, refer to the Hardware Overview section of the Fedora 17 Release Notes. When the kdump crash recovery is enabled, the minimum memory requirements increase by the amount of memory reserved for it. This value is determined by the user, and defaults to 128 MB plus 64 MB for each TB of physical memory (that is, a total of 192 MB for a system with 1 TB of physical memory).

23.2.2.1. Enabling the Service

To start the kdump daemon at boot time, click the Enable button on the toolbar. This will enable the service and start it for the current session. Similarly, clicking the Disable button will disable it and stop the service immediately.
For more information on system services and their configuration, refer to Capítulo 8, Services and Daemons.

23.2.2.2. The Basic Settings Tab

The Basic Settings tab enables you to configure the amount of memory that is reserved for the kdump kernel. To do so, select the Manual kdump memory settings radio button, and click the up and down arrow buttons next to the New kdump Memory field to increase or decrease the value. Notice that the Usable Memory field changes accordingly showing you the remaining memory that will be available to the system.
Basic Settings
Basic Settings
Figura 23.1. Basic Settings

23.2.2.3. The Target Settings Tab

The Target Settings tab enables you to specify the target location for the vmcore dump. It can be either stored as a file in a local file system, written directly to a device, or sent over a network using the NFS (Network File System) or SSH (Secure Shell) protocol.
Target Settings
Target Settings
Figura 23.2. Target Settings

To save the dump to the local file system, select the Local filesystem radio button. Optionally, you can customize the settings by choosing a different partition from the Partition, and a target directory from the Path pulldown lists.
To write the dump directly to a device, select the Raw device radio button, and choose the desired target device from the pulldown list next to it.
To store the dump to a remote machine, select the Network radio button. To use the NFS protocol, select the NFS radio button, and fill the Server name and Path to directory fields. To use the SSH protocol, select the SSH radio button, and fill the Server name, Path to directory, and User name fields with the remote server address, target directory, and a valid remote user name respectively. Refer to Capítulo 10, OpenSSH for information on how to configure an SSH server, and how to set up a key-based authentication.
For a complete list of currently supported targets, see Tabla 23.1, “Supported kdump targets”.
Tabla 23.1. Supported kdump targets
Type Supported Targets Unsupported Targets
Raw device All locally attached raw disks and partitions.
Local file system ext2, ext3, ext4, minix file systems on directly attached disk drives, hardware RAID logical drives, LVM devices, and mdraid arrays. The eCryptfs file system.
Remote directory Remote directories accessed using the NFS or SSH protocol over IPv4. Remote directories on the rootfs file system accessed using the NFS protocol.
Remote directories accessed using the iSCSI protocol over hardware initiators. Remote directories accessed using the iSCSI protocol over software initiators.
Remote directories accessed over IPv6.
Remote directories accessed using the SMB/CIFS protocol.
Remote directories accessed using the FCoE (Fibre Channel over Ethernet) protocol.
Remote directories accessed using wireless network interfaces.
Multipath-based storages.

23.2.2.4. The Filtering Settings Tab

The Filtering Settings tab enables you to select the filtering level for the vmcore dump.
Filtering Settings
Filtering Settings
Figura 23.3. Filtering Settings

To exclude the zero page, cache page, cache private, user data, or free page from the dump, select the checkbox next to the appropriate label.

23.2.2.5. The Expert Settings Tab

The Expert Settings tab enables you to choose which kernel and initial RAM disk to use, as well as to customize the options that are passed to the kernel and the core collector program.
Expert Settings
Expert Settings
Figura 23.4. Expert Settings

To use a different initial RAM disk, select the Custom initrd radio button, and choose the desired RAM disk from the pulldown list next to it.
To capture a different kernel, select the Custom kernel radio button, and choose the desired kernel image from the pulldown list on the right.
To adjust the list of options that are passed to the kernel at boot time, edit the content of the Edited text field. Note that you can always revert your changes by clicking the Refresh button.
To choose what action to perform when kdump fails to create a core dump, select an appropriate option from the Default action pulldown list. Available options are mount rootfs and run /sbin/init (the default action), reboot (to reboot the system), shell (to present a user with an interactive shell prompt), halt (to halt the system), and poweroff (to power the system off).
To customize the options that are passed to the makedumpfile core collector, edit the Core collector text field; see Sección 23.2.3.3, “Configuring the Core Collector” for more information.

23.2.3. Configuring kdump on the Command Line

23.2.3.1. Configuring the Memory Usage

To configure the amount of memory that is reserved for the kdump kernel, as root, edit the /etc/default/grub file and add the crashkernel=<size>M (or crashkernel=auto) parameter to the list of kernel options (the GRUB_CMDLINE_LINUX line). For example, to reserve 128 MB of memory, use:
GRUB_CMDLINE_LINUX="crashkernel=128M quiet rhgb"
Then update the configuration file for the GRUB 2 boot loader by typing the following at a shell prompt as root:
grub2-mkconfig -o /boot/grub2/grub.cfg

Make sure the system has enough memory

Unless the system has enough memory, this option will not be available. For the information on minimum memory requirements, refer to the Hardware Overview section of the Fedora 17 Release Notes. When the kdump crash recovery is enabled, the minimum memory requirements increase by the amount of memory reserved for it. This value is determined by the user, and defaults to 128 MB plus 64 MB for each TB of physical memory (that is, a total of 192 MB for a system with 1 TB of physical memory).

Using the crashkernel=auto parameter

In Fedora 17, the crashkernel=auto only reserves memory if the system has 4 GB of physical memory or more.

23.2.3.2. Configuring the Target Type

When a kernel crash is captured, the core dump can be either stored as a file in a local file system, written directly to a device, or sent over a network using the NFS (Network File System) or SSH (Secure Shell) protocol. Only one of these options can be set at the moment, and the default option is to store the vmcore file in the /var/crash/ directory of the local file system. To change this, as root, open the /etc/kdump.conf configuration file in a text editor and edit the options as described below.
To change the local directory in which the core dump is to be saved, remove the hash sign (#) from the beginning of the #path /var/crash line, and replace the value with a desired directory path. Optionally, if you wish to write the file to a different partition, follow the same procedure with the #ext4 /dev/sda3 line as well, and change both the file system type and the device (a device name, a file system label, and UUID are all supported) accordingly. For example:
ext3 /dev/sda4
path /usr/local/cores
To write the dump directly to a device, remove the hash sign (#) from the beginning of the #raw /dev/sda5 line, and replace the value with a desired device name. For example:
raw /dev/sdb1
To store the dump to a remote machine using the NFS protocol, remove the hash sign (#) from the beginning of the #net my.server.com:/export/tmp line, and replace the value with a valid hostname and directory path. For example:
net penguin.example.com:/export/cores
To store the dump to a remote machine using the SSH protocol, remove the hash sign (#) from the beginning of the #net user@my.server.com line, and replace the value with a valid username and hostname. For example:
net john@penguin.example.com
Refer to Capítulo 10, OpenSSH for information on how to configure an SSH server, and how to set up a key-based authentication.
For a complete list of currently supported targets, see Tabla 23.1, “Supported kdump targets”.

23.2.3.3. Configuring the Core Collector

To reduce the size of the vmcore dump file, kdump allows you to specify an external application (that is, a core collector) to compress the data, and optionally leave out all irrelevant information. Currently, the only fully supported core collector is makedumpfile.
To enable the core collector, as root, open the /etc/kdump.conf configuration file in a text editor, remove the hash sign (#) from the beginning of the #core_collector makedumpfile -c --message-level 1 -d 31 line, and edit the command line options as described below.
To enable the dump file compression, add the -c parameter. For example:
core_collector makedumpfile -c
To remove certain pages from the dump, add the -d value parameter, where value is a sum of values of pages you want to omit as described in Tabla 23.2, “Supported filtering levels”. For example, to remove both zero and free pages, use the following:
core_collector makedumpfile -d 17 -c
Refer to the manual page for makedumpfile for a complete list of available options.
Tabla 23.2. Supported filtering levels
Opciones Descripción
1 Zero pages
2 Cache pages
4 Cache private
8 User pages
16 Free pages

23.2.3.4. Changing the Default Action

By default, when kdump fails to create a core dump, the root file system is mounted and /sbin/init is run. To change this behavior, as root, open the /etc/kdump.conf configuration file in a text editor, remove the hash sign (#) from the beginning of the #default shell line, and replace the value with a desired action as described in Tabla 23.3, “Supported actions”.
Tabla 23.3. Supported actions
Opciones Descripción
reboot Reboot the system, losing the core in the process.
halt Halt the system.
poweroff Power off the system.
shell Run the msh session from within the initramfs, allowing a user to record the core manually.

For example:
default halt

23.2.3.5. Enabling the Service

To start the kdump daemon at boot time, type the following at a shell prompt as root:
systemctl enable kdump.service
Similarly, typing systemctl disable kdump.service will disable it. To start the service in the current session, use the following command as root:
systemctl start kdump.service
For more information on services and their configuration, refer to Capítulo 8, Services and Daemons.

23.2.4. Testing the Configuration

Be careful when using these commands

The commands below will cause the kernel to crash. Use caution when following these steps, and by no means use them on a production machine.
To test the configuration, reboot the system with kdump enabled, and make sure that the service is running (refer to Sección 8.2, “Running Services” for more information on how to run a service in Fedora):
systemctl is-active kdump.service
Then type the following commands at a shell prompt:
echo 1 > /proc/sys/kernel/sysrq
echo c > /proc/sysrq-trigger
This will force the Linux kernel to crash, and the address-YYYY-MM-DD-HH:MM:SS/vmcore file will be copied to the location you have selected in the configuration (that is, to /var/crash/ by default).

23.3. Analyzing the Core Dump

To determine the cause of the system crash, you can use the crash utility, which provides an interactive prompt very similar to the GNU Debugger (GDB). This utility allows you to interactively analyze a running Linux system as well as a core dump created by netdump, diskdump, xendump, or kdump.

Make sure you have relevant packages installed

To analyze the vmcore dump file, you must have the crash and kernel-debuginfo packages installed. To install these packages, type the following at a shell prompt as root:
yum install crash
debuginfo-install kernel
For more information on how to install new packages in Fedora, refer to Sección 4.2.4, “Installing Packages”.

23.3.1. Running the crash Utility

To start the utility, type the command in the following form at a shell prompt:
crash /var/crash/timestamp/vmcore /usr/lib/debug/lib/modules/kernel/vmlinux
Note that the kernel version should be the same that was captured by kdump. To find out which kernel you are currently running, use the uname -r command.
Ejemplo 23.1. Running the crash utility
~]# crash /usr/lib/debug/lib/modules/2.6.32-69.el6.i686/vmlinux \
/var/crash/127.0.0.1-2010-08-25-08:45:02/vmcore

crash 5.0.0-23.el6
Copyright (C) 2002-2010  Red Hat, Inc.
Copyright (C) 2004, 2005, 2006  IBM Corporation
Copyright (C) 1999-2006  Hewlett-Packard Co
Copyright (C) 2005, 2006  Fujitsu Limited
Copyright (C) 2006, 2007  VA Linux Systems Japan K.K.
Copyright (C) 2005  NEC Corporation
Copyright (C) 1999, 2002, 2007  Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002  Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions.  Enter "help copying" to see the conditions.
This program has absolutely no warranty.  Enter "help warranty" for details.

GNU gdb (GDB) 7.0
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

      KERNEL: /usr/lib/debug/lib/modules/2.6.32-69.el6.i686/vmlinux
    DUMPFILE: /var/crash/127.0.0.1-2010-08-25-08:45:02/vmcore  [PARTIAL DUMP]
        CPUS: 4
        DATE: Wed Aug 25 08:44:47 2010
      UPTIME: 00:09:02
LOAD AVERAGE: 0.00, 0.01, 0.00
       TASKS: 140
    NODENAME: hp-dl320g5-02.lab.bos.redhat.com
     RELEASE: 2.6.32-69.el6.i686
     VERSION: #1 SMP Tue Aug 24 10:31:45 EDT 2010
     MACHINE: i686  (2394 Mhz)
      MEMORY: 8 GB
       PANIC: "Oops: 0002 [#1] SMP " (check log for details)
         PID: 5591
     COMMAND: "bash"
        TASK: f196d560  [THREAD_INFO: ef4da000]
         CPU: 2
       STATE: TASK_RUNNING (PANIC)

crash>

23.3.2. Displaying the Message Buffer

To display the kernel message buffer, type the log command at the interactive prompt.
Ejemplo 23.2. Displaying the kernel message buffer
crash> log
... several lines omitted ...
EIP: 0060:[<c068124f>] EFLAGS: 00010096 CPU: 2
EIP is at sysrq_handle_crash+0xf/0x20
EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000
ESI: c0a09ca0 EDI: 00000286 EBP: 00000000 ESP: ef4dbf24
 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
Process bash (pid: 5591, ti=ef4da000 task=f196d560 task.ti=ef4da000)
Stack:
 c068146b c0960891 c0968653 00000003 00000000 00000002 efade5c0 c06814d0
<0> fffffffb c068150f b7776000 f2600c40 c0569ec4 ef4dbf9c 00000002 b7776000
<0> efade5c0 00000002 b7776000 c0569e60 c051de50 ef4dbf9c f196d560 ef4dbfb4
Call Trace:
 [<c068146b>] ? __handle_sysrq+0xfb/0x160
 [<c06814d0>] ? write_sysrq_trigger+0x0/0x50
 [<c068150f>] ? write_sysrq_trigger+0x3f/0x50
 [<c0569ec4>] ? proc_reg_write+0x64/0xa0
 [<c0569e60>] ? proc_reg_write+0x0/0xa0
 [<c051de50>] ? vfs_write+0xa0/0x190
 [<c051e8d1>] ? sys_write+0x41/0x70
 [<c0409adc>] ? syscall_call+0x7/0xb
Code: a0 c0 01 0f b6 41 03 19 d2 f7 d2 83 e2 03 83 e0 cf c1 e2 04 09 d0 88 41 03 f3 c3 90 c7 05 c8 1b 9e c0 01 00 00 00 0f ae f8 89 f6 <c6> 05 00 00 00 00 01 c3 89 f6 8d bc 27 00 00 00 00 8d 50 d0 83
EIP: [<c068124f>] sysrq_handle_crash+0xf/0x20 SS:ESP 0068:ef4dbf24
CR2: 0000000000000000

Type help log for more information on the command usage.

23.3.3. Displaying a Backtrace

To display the kernel stack trace, type the bt command at the interactive prompt. You can use bt pid to display the backtrace of the selected process.
Ejemplo 23.3. Displaying the kernel stack trace
crash> bt
PID: 5591   TASK: f196d560  CPU: 2   COMMAND: "bash"
 #0 [ef4dbdcc] crash_kexec at c0494922
 #1 [ef4dbe20] oops_end at c080e402
 #2 [ef4dbe34] no_context at c043089d
 #3 [ef4dbe58] bad_area at c0430b26
 #4 [ef4dbe6c] do_page_fault at c080fb9b
 #5 [ef4dbee4] error_code (via page_fault) at c080d809
    EAX: 00000063  EBX: 00000063  ECX: c09e1c8c  EDX: 00000000  EBP: 00000000
    DS:  007b      ESI: c0a09ca0  ES:  007b      EDI: 00000286  GS:  00e0
    CS:  0060      EIP: c068124f  ERR: ffffffff  EFLAGS: 00010096
 #6 [ef4dbf18] sysrq_handle_crash at c068124f
 #7 [ef4dbf24] __handle_sysrq at c0681469
 #8 [ef4dbf48] write_sysrq_trigger at c068150a
 #9 [ef4dbf54] proc_reg_write at c0569ec2
#10 [ef4dbf74] vfs_write at c051de4e
#11 [ef4dbf94] sys_write at c051e8cc
#12 [ef4dbfb0] system_call at c0409ad5
    EAX: ffffffda  EBX: 00000001  ECX: b7776000  EDX: 00000002
    DS:  007b      ESI: 00000002  ES:  007b      EDI: b7776000
    SS:  007b      ESP: bfcb2088  EBP: bfcb20b4  GS:  0033
    CS:  0073      EIP: 00edc416  ERR: 00000004  EFLAGS: 00000246

Type help bt for more information on the command usage.

23.3.4. Displaying a Process Status

To display status of processes in the system, type the ps command at the interactive prompt. You can use ps pid to display the status of the selected process.
Ejemplo 23.4. Displaying status of processes in the system
crash> ps
   PID    PPID  CPU   TASK    ST  %MEM     VSZ    RSS  COMM
>     0      0   0  c09dc560  RU   0.0       0      0  [swapper]
>     0      0   1  f7072030  RU   0.0       0      0  [swapper]
      0      0   2  f70a3a90  RU   0.0       0      0  [swapper]
>     0      0   3  f70ac560  RU   0.0       0      0  [swapper]
      1      0   1  f705ba90  IN   0.0    2828   1424  init
... several lines omitted ...
   5566      1   1  f2592560  IN   0.0   12876    784  auditd
   5567      1   2  ef427560  IN   0.0   12876    784  auditd
   5587   5132   0  f196d030  IN   0.0   11064   3184  sshd
>  5591   5587   2  f196d560  RU   0.0    5084   1648  bash

Type help ps for more information on the command usage.

23.3.5. Displaying Virtual Memory Information

To display basic virtual memory information, type the vm command at the interactive prompt. You can use vm pid to display information on the selected process.
Ejemplo 23.5. Displaying virtual memory information of the current context
crash> vm
PID: 5591   TASK: f196d560  CPU: 2   COMMAND: "bash"
   MM       PGD      RSS    TOTAL_VM
f19b5900  ef9c6000  1648k    5084k
  VMA       START      END    FLAGS  FILE
f1bb0310    242000    260000 8000875  /lib/ld-2.12.so
f26af0b8    260000    261000 8100871  /lib/ld-2.12.so
efbc275c    261000    262000 8100873  /lib/ld-2.12.so
efbc2a18    268000    3ed000 8000075  /lib/libc-2.12.so
efbc23d8    3ed000    3ee000 8000070  /lib/libc-2.12.so
efbc2888    3ee000    3f0000 8100071  /lib/libc-2.12.so
efbc2cd4    3f0000    3f1000 8100073  /lib/libc-2.12.so
efbc243c    3f1000    3f4000 100073
efbc28ec    3f6000    3f9000 8000075  /lib/libdl-2.12.so
efbc2568    3f9000    3fa000 8100071  /lib/libdl-2.12.so
efbc2f2c    3fa000    3fb000 8100073  /lib/libdl-2.12.so
f26af888    7e6000    7fc000 8000075  /lib/libtinfo.so.5.7
f26aff2c    7fc000    7ff000 8100073  /lib/libtinfo.so.5.7
efbc211c    d83000    d8f000 8000075  /lib/libnss_files-2.12.so
efbc2504    d8f000    d90000 8100071  /lib/libnss_files-2.12.so
efbc2950    d90000    d91000 8100073  /lib/libnss_files-2.12.so
f26afe00    edc000    edd000 4040075
f1bb0a18   8047000   8118000 8001875  /bin/bash
f1bb01e4   8118000   811d000 8101873  /bin/bash
f1bb0c70   811d000   8122000 100073
f26afae0   9fd9000   9ffa000 100073
... several lines omitted ...

Type help vm for more information on the command usage.

23.3.6. Displaying Open Files

To display information about open files, type the files command at the interactive prompt. You can use files pid to display files opened by the selected process.
Ejemplo 23.6. Displaying information about open files of the current context
crash> files
PID: 5591   TASK: f196d560  CPU: 2   COMMAND: "bash"
ROOT: /    CWD: /root
 FD    FILE     DENTRY    INODE    TYPE  PATH
  0  f734f640  eedc2c6c  eecd6048  CHR   /pts/0
  1  efade5c0  eee14090  f00431d4  REG   /proc/sysrq-trigger
  2  f734f640  eedc2c6c  eecd6048  CHR   /pts/0
 10  f734f640  eedc2c6c  eecd6048  CHR   /pts/0
255  f734f640  eedc2c6c  eecd6048  CHR   /pts/0

Type help files for more information on the command usage.

23.3.7. Exiting the Utility

To exit the interactive prompt and terminate crash, type exit or q.
Ejemplo 23.7. Exiting the crash utility
crash> exit
~]#

23.4. Recursos adicionales

23.4.1. Documentación instalada

  • kdump.conf(5) — a manual page for the /etc/kdump.conf configuration file containing the full documentation of available options.
  • makedumpfile(8) — a manual page for the makedumpfile core collector.
  • kexec(8) — a manual page for kexec.
  • crash(8) — a manual page for the crash utility.
  • /usr/share/doc/kexec-tools-version/kexec-kdump-howto.txt — an overview of the kdump and kexec installation and usage.

23.4.2. Sitios Web útiles

https://access.redhat.com/kb/docs/DOC-6039
The Red Hat Knowledgebase article about the kexec and kdump configuration.
https://access.redhat.com/kb/docs/DOC-45183
The Red Hat Knowledgebase article about supported kdump targets.
http://people.redhat.com/anderson/
The crash utility homepage.

Nombramiento Consistente de Dispositivos de Red

Fedora 17 provee nombramiento consistente para dispositivos de red. esta característica el nombre de los dispositivos de red en un sistema para hacerlo localizable y diferenciar maqs fácilmente los dispositivos.
Tradicionalmente, los dispositivos de red en Linux se enumeran como eth[0123…], pero esos nombres no corresponden necesariamente a los nombres reales etiquetados en el chasis. Las plataforma de servidores modernos con adaptadores de red múltiples pueden encontrar un nombramiento indeterminado y no intuitivo de esos dispositivos. Esto afecta tanto a los dispositivos de red incluidos en la tarjeta madre (Lan-on-Motherboard, o LOM) y los dispositivos que se instalan (sencillos y multipuertos).
La nueva convención de nombramiento, nombra las interfases de red basadas en su localización física, ya sean integradas o en ranuras PCI. Al convertirlas a esta convención de nombramiento, los administradores del sistema no tendran ya que adivinar la localiszación física de un puerto de red, o modificar cada sistema para renombrarlos en un orden consistente.
Esta característica, implementada por medio del programa biosdevname, cambiará el nombre de todos los dispositivos de red integrados, los dispositivos de red PCI , y las funciones virtuales de dispositivos de red existentes eth[0123…] a la nueva convención de nombramiento como se demuestra en Tabla A.1, “La nueva convención de nombramiento”.
Tabla A.1. La nueva convención de nombramiento
Dispositivo Nombre Anterior Nombre Nuevo
Dispositivo de red Integrado (LOM) eth[0123…] em[1234…][a]
Dispositivo de red PCI eth[0123…] p<ranura >p<puerto ethernet >[b]
Función Virtual eth[0123…] p<ranura>p<puerto ethernet >_<dispositivo virtual i>[c]
[a] La nueva enumeración comienza en 1.
[b] Por ejemplo: p3p4
[c] Por ejemplo: p3p4_1

Los administradors de sistemas pueden continuar la escritura de reglas en /etc/udev/rules.d/70-persistent-net.rules para cambiar los nombres de dispositivos a cualquiera deseado; estos tomarán precedencia de su convención de nombramiento y localización física.

A.1. Sistemas Afectados

El nombramiento consistente de los dispositivos de red esta activado predefinidamente para todos los sistemas que cumplan los requisitos en Sección A.2, “Requerimientos del Sistema”.
RIndependientemente del tipo de sistema, Los invitados Fedora no tendrán los dispositivos renombrados a menos que el BIOS de la máquina virtual provea la información SMBIOS que se detalla en Sección A.2, “Requerimientos del Sistema”. Asi mismo, las actualizaciones de distribuciones previas que no utilizaron esta convención de nombramiento (esto es , Fedora 14 y anterioes) quedan sin cambios, y la convencion anterior continuará siendo utilizada.

A.2. Requerimientos del Sistema

El programa biosdevname utiliza informacion de la BIOS del sistema, específicamente la type 9 (Ranura del Sistema) y los campos type 41 (Onboard Devices Extended Information) contenidos dentro delSMBIOS. Si el BIOS del sistema no tiene la version SMBIOS 2.6 o mayor y esta información, no se utilizará la nueva convención de nombramiento. La mayoria de los equipos antiguos no soportan esta característica debido a una falta de las BIOS con la versión y campo de información correctas de SMBIOS. Para información de las versiones de BIOS o SMBIOS, contacte al vendedor de su equipo.
Para que esta característica entre en efecto, el paquete biosdevname debe estar asimismo instalado. el paquete biosdevname es parte del grupo de paquetes base en Fedora 17. Todas las opciones de instalación, excepto por Instalación Minima, incluyen este paquete.

A.3. Activando y Desactivando la Característica

Para desactivar el nombramiento consistente de los dispositivos de red en sistemas Dell en los cuales estaria activado de forma predefinida, pase la siguiente iocion en la linea de arranque del sistema, en ambos casos durante y después de la instalación:
biosdevname=0
Para activar esta característica en otros tipos de sistema que cumplan los requerimientos minimos (vea Sección A.2, “Requerimientos del Sistema”), pase la siguiente opción en la línea de comando de arranque, en ambos casos durante y después de la instalación:
biosdevname=1
A menos que el sistema cumpla con los requerimientos mínimos, esta opción sera ignorada y el systema arrancará con el formato tradicional de nombres de dispositivos de red.
Si se especifica la opción de instalación biosdevname, debe permanecer como opción de arranque por la duración de vida del sistema.

A.4. Notas para Administradores

Muchos archivos de personalización pueden incluir nombres de dispositivos de red, y de esta manera requieren actualizaciones si se esta mviendo de un sistema con la convencion anterior a la nueva convención. Si ueste utiliza una nueva convención de nombramiento tambien tendra qiue actualizar los nombres de los dispositivos de red en areas tales como las tablas personalizadas IP, los scripts que alteran la irqbalance, y otros archivos similares de configuracion. Asi mismo, la activación de este cambio para instalación requerirá la modificación de los archivos kickstart existentes que utilizan los nombres de dispositivo a través de el parametro ksdevice; esos archivos kickstart necesitarán ser actualizados para utilizar la dirección MAC de los dispositivos de red o el nuevo nombre de los dispositivos de red.
The Fedora Project recomineda fuertemente que usted considere esta característica como una opción en el momento de la instalacón; activando o desactivando la característica de post instalación, aunque es tecnicamente posible, puede llegar a complicarse y no es recomendada. Para aquellos administradores de sistema que desen hacerlo, en un sistema que cumpla con los requerimientos mínimod, remueva el archivo /etc/udev/rules.d/70-persistent-net.rules y las líneas HWADDR de todos los archivos /etc/sysconfig/network-scripts/ifcfg-*. Adicionalmente , renombre estos archivos ifcfg-* para que utilicen esta nueva convención de nombramiento. Los nuevos nombres entraran en efecto despues de reiniciar el equipo. Recuerde actualizar cualquier script personalizado, reglas de IP, y archivos de configuración de servicios que puedan incluir nombres de dispositivos de red.

RPM

The RPM Package Manager (RPM) is an open packaging system , which runs on Fedora as well as other Linux and UNIX systems. Red Hat, Inc. and the Fedora Project encourage other vendors to use RPM for their own products. RPM is distributed under the terms of the GPL (GNU General Public License).
The RPM Package Manager only works with packages built to work with the RPM format. RPM is itself provided as a pre-installed rpm package. For the end user, RPM makes system updates easy. Installing, uninstalling and upgrading RPM packages can be accomplished with short commands. RPM maintains a database of installed packages and their files, so you can invoke powerful queries and verifications on your system.
The RPM package format has been improved for Fedora 17. RPM packages are now compressed using the XZ lossless data compression format, which has the benefit of greater compression and less CPU usage during decompression, and support multiple strong hash algorithms, such as SHA-256, for package signing and verification.

Use Yum Instead of RPM Whenever Possible

For most package management tasks, the Yum package manager offers equal and often greater capabilities and utility than RPM . Yum also performs and tracks complicated system dependency resolution, and will complain and force system integrity checks if you use RPM as well to install and remove packages. For these reasons, it is highly recommended that you use Yum instead of RPM whenever possible to perform package management tasks. Refer to Capítulo 4, Yum.
If you prefer a graphical interface, you can use the PackageKit GUI application, which uses Yum as its back end, to manage your system's packages. Refer to Capítulo 5, PackageKit for details.

Install RPM packages with the correct architecture!

When installing a package, ensure it is compatible with your operating system and processor architecture. This can usually be determined by checking the package name. Many of the following examples show RPM packages compiled for the AMD64/Intel 64 computer architectures; thus, the RPM file name ends in x86_64.rpm.
During upgrades, RPM handles configuration files carefully, so that you never lose your customizations—something that you cannot accomplish with regular .tar.gz files.
For the developer, RPM allows you to take software source code and package it into source and binary packages for end users. This process is quite simple and is driven from a single file and optional patches that you create. This clear delineation between pristine sources and your patches along with build instructions eases the maintenance of the package as new versions of the software are released.

Running rpm commands must be performed as root

Ya que RPM efectúa cambios a su sistema, usted debe tener privilegios de usuario root para poder instalar, remover o actualizar un paquete RPM.

B.1. Metas de diseño RPM

Podría ser útil conocer las metas de diseño de RPM para poder aprender a usarlo:
Upgradability
With RPM, you can upgrade individual components of your system without completely reinstalling. When you get a new release of an operating system based on RPM, such as Fedora, you do not need to reinstall a fresh copy of the operating system your machine (as you might need to with operating systems based on other packaging systems). RPM allows intelligent, fully-automated, in-place upgrades of your system. In addition, configuration files in packages are preserved across upgrades, so you do not lose your customizations. There are no special upgrade files needed to upgrade a package because the same RPM file is used to both install and upgrade the package on your system.
Powerful Querying
RPM is designed to provide powerful querying options. You can perform searches on your entire database for packages or even just certain files. You can also easily find out what package a file belongs to and from where the package came. The files an RPM package contains are in a compressed archive, with a custom binary header containing useful information about the package and its contents, allowing you to query individual packages quickly and easily.
System Verification
Another powerful RPM feature is the ability to verify packages. If you are worried that you deleted an important file for some package, you can verify the package. You are then notified of anomalies, if any—at which point you can reinstall the package, if necessary. Any configuration files that you modified are preserved during reinstallation.
Pristine Sources
Un objetivo crucial ha sido el de permitir el uso de fuentes de software originario, tal y como ha sido distribuido por los autores originales del software. Con RPM tendrá las fuentes originarias junto con cualquier parche que haya sido usado además de las instrucciones de construcción completas. Esta es una ventaja importante por varios motivos. Si por ejemplo sale una versión nueva de un programa, no necesariamente necesita empezar desde cero para que se compile. Puede revisar el parche para ver lo que tal vez necesitaría hacer. Usando esta técnica se ven fácilmente todos los elementos predeterminados y compilados en el programa y todos los cambios que se le han hecho al software para construir adecuadamente.
El objetivo de mantener las fuentes originarias podría parecer importante sólo para los desarrolladores, pero el resultado de este objetivo también brinda un software de más alta calidad para los usuarios finales.

B.2. El uso de RPM

RPM has five basic modes of operation (not counting package building): installing, uninstalling, upgrading, querying, and verifying. This section contains an overview of each mode. For complete details and options, try rpm --help or man rpm. You can also refer to Sección B.5, “Recursos adicionales” for more information on RPM.

B.2.1. Encontrar paquetes RPM

Before using any RPM packages, you must know where to find them. An Internet search returns many RPM repositories, but if you are looking for Red Hat RPM packages, they can be found at the following locations:
  • The Fedora installation media contain many installable RPMs.
  • The initial RPM repositories provided with the YUM package manager . Refer to Capítulo 4, Yum for details on how to use the official Fedora package repositories.
  • The active Fedora mirrors contains many installable RPMs: http://mirrors.fedoraproject.org/publiclist/.
  • Unofficial, third-party repositories not affiliated with The Fedora Project also provide RPM packages.

    Third-party repositories and package compatibility

    When considering third-party repositories for use with your Fedora system, pay close attention to the repository's web site with regard to package compatibility before adding the repository as a package source. Alternate package repositories may offer different, incompatible versions of the same software, including packages already included in the Fedora repositories.

B.2.2. Installing and Upgrading

RPM packages typically have file names like tree-1.5.3-2.fc17.x86_64.rpm. The file name includes the package name (tree), version (1.5.3), release (2), operating system major version (fc17) and CPU architecture (x86_64).
You can use rpm's -U option to:
  • upgrade an existing but older package on the system to a newer version, or
  • install the package even if an older version is not already installed.
That is, rpm -U <rpm_file> is able to perform the function of either upgrading or installing as is appropriate for the package.
Assuming the tree-1.5.3-2.fc17.x86_64.rpm package is in the current directory, log in as root and type the following command at a shell prompt to either upgrade or install the tree package as determined by rpm:
rpm -Uvh tree-1.5.3-2.fc17.x86_64.rpm

Use -Uvh for nicely-formatted RPM installs

The -v and -h options (which are combined with -U) cause rpm to print more verbose output and display a progress meter using hash signs.
If the upgrade/installation is successful, the following output is displayed:
Preparing...                ########################################### [100%]
   1:tree                   ########################################### [100%]

Always use the -i (install) option to install new kernel packages!

rpm provides two different options for installing packages: the aforementioned -U option (which historically stands for upgrade), and the -i option, historically standing for install. Because the -U option subsumes both install and upgrade functions, we recommend to use rpm -Uvh with all packages except kernel packages.
You should always use the -i option to simply install a new kernel package instead of upgrading it. This is because using the -U option to upgrade a kernel package removes the previous (older) kernel package, which could render the system unable to boot if there is a problem with the new kernel. Therefore, use the rpm -i <kernel_package> command to install a new kernel without replacing any older kernel packages. For more information on installing kernel packages, refer to Capítulo 21, Actualización Manual del Kernel.
La firma del paquete se autentica en el momento de la instalación o de la actualización del paquete. La firma confirma que el paquete ha sido firmado por una entidad autorizada. Si la verificación de la firma falla, verá el siguiente mensaje de error:
error: tree-1.5.2.2-4.fc17.x86_64.rpm: Header V3 RSA/SHA256 signature: BAD, key ID
d22e77f2
Si se trata de una nueva firma, solamente de cabecera, verá el siguiente error:
error: tree-1.5.2.2-4.fc17.x86_64.rpm: Header V3 RSA/SHA256 signature: BAD,
key ID d22e77f2
If you do not have the appropriate key installed to verify the signature, the message contains the word NOKEY:
warning: tree-1.5.2.2-4.fc17.x86_64.rpm: Header V3 RSA/SHA1 signature: NOKEY, key ID 57bbccba
Refer to Sección B.3, “Revisando la firma de los paquetes” for more information on checking a package's signature.

B.2.2.1. Paquete ya instalado

If a package of the same name and version is already installed , the following output is displayed:
Preparing...                ########################################### [100%]
	package tree-1.5.3-2.fc17.x86_64 is already installed
However, if you want to install the package anyway, you can use the --replacepkgs option, which tells RPM to ignore the error:
rpm -Uvh --replacepkgs tree-1.5.3-2.fc17.x86_64.rpm
Esta opción es útil si se borraron los archivos instalados del RPM o si desea que se instalen los archivos de configuración originales del RPM.

B.2.2.2. Archivos en conflicto

If you attempt to install a package that contains a file which has already been installed by another package , the following is displayed:
Preparing... ##################################################
 file /usr/bin/foobar from install of foo-1.0-1.fc17.x86_64 conflicts
with file from package bar-3.1.1.fc17.x86_64
To make RPM ignore this error, use the --replacefiles option:
rpm -Uvh --replacefiles foo-1.0-1.fc17.x86_64.rpm

B.2.2.3. Dependencias no resueltas

RPM packages may sometimes depend on other packages , which means that they require other packages to be installed to run properly. If you try to install a package which has an unresolved dependency, output similar to the following is displayed:
error: Failed dependencies:
	bar.so.3()(64bit) is needed by foo-1.0-1.fc17.x86_64
If you are installing a package from the Fedora installation media, such as from a CD-ROM or DVD, the dependencies may be available. Find the suggested package(s) on the Fedora installation media or on one of the active Fedora mirrors and add it to the command:
rpm -Uvh foo-1.0-1.fc17.x86_64.rpm    bar-3.1.1.fc17.x86_64.rpm
Si la instalación de ambos paquetes es exitosa, verá una salida similar a lo siguiente:
Preparing...                ########################################### [100%]
   1:foo                   ########################################### [ 50%]
   2:bar                   ########################################### [100%]
You can try the --whatprovides option to determine which package contains the required file.
rpm -q --whatprovides "bar.so.3"
If the package that contains bar.so.3 is in the RPM database, the name of the package is displayed:
bar-3.1.1.fc17.i586.rpm

Warning: Forcing Package Installation

Although we can force rpm to install a package that gives us a Failed dependencies error (using the --nodeps option), this is not recommended, and will usually result in the installed package failing to run. Installing or removing packages with rpm --nodeps can cause applications to misbehave and/or crash, and can cause serious package management problems or, possibly, system failure. For these reasons, it is best to heed such warnings; the package manager—whether RPM, Yum or PackageKit—shows us these warnings and suggests possible fixes because accounting for dependencies is critical. The Yum package manager can perform dependency resolution and fetch dependencies from online repositories, making it safer, easier and smarter than forcing rpm to carry out actions without regard to resolving dependencies.

B.2.3. Configuration File Changes

Because RPM performs intelligent upgrading of packages with configuration files , you may see one or the other of the following messages:
saving /etc/foo.conf as /etc/foo.conf.rpmsave
This message means that changes you made to the configuration file may not be forward-compatible with the new configuration file in the package, so RPM saved your original file and installed a new one. You should investigate the differences between the two configuration files and resolve them as soon as possible, to ensure that your system continues to function properly.
Alternatively, RPM may save the package's new configuration file as, for example, foo.conf.rpmnew, and leave the configuration file you modified untouched. You should still resolve any conflicts between your modified configuration file and the new one, usually by merging changes from the old one to the new one with a diff program.
If you attempt to upgrade to a package with an older version number (that is, if a higher version of the package is already installed), the output is similar to the following:
package foo-2.0-1.fc17.x86_64.rpm (which is newer than foo-1.0-1) is already installed
To force RPM to upgrade anyway, use the --oldpackage option:
rpm -Uvh --oldpackage foo-1.0-1.fc17.x86_64.rpm

B.2.4. Desinstalación

Desinstalar un paquete es tan simple como instalarlo. Teclee el siguiente comando en el intérprete de comandos de la shell:
rpm -e foo

rpm -e and package name errors

Notice that we used the package name foo, not the name of the original package file, foo-1.0-1.fc17.x86_64. If you attempt to uninstall a package using the rpm -e command and the original full file name, you will receive a package name error.
You can encounter dependency errors when uninstalling a package if another installed package depends on the one you are trying to remove. For example:
rpm -e ghostscript
error: Failed dependencies:
	libgs.so.8()(64bit) is needed by (installed) libspectre-0.2.2-3.fc17.x86_64
	libgs.so.8()(64bit) is needed by (installed) foomatic-4.0.3-1.fc17.x86_64
	libijs-0.35.so()(64bit) is needed by (installed) gutenprint-5.2.4-5.fc17.x86_64
	ghostscript is needed by (installed) printer-filters-1.1-4.fc17.noarch
Similar to how we searched for a shared object library (i.e. a <library_name>.so.<number> file) in Sección B.2.2.3, “Dependencias no resueltas”, we can search for a 64-bit shared object library using this exact syntax (and making sure to quote the file name):
~]# rpm -q --whatprovides "libgs.so.8()(64bit)"
ghostscript-8.70-1.fc17.x86_64

Warning: Forcing Package Installation

Although we can force rpm to remove a package that gives us a Failed dependencies error (using the --nodeps option), this is not recommended, and may cause harm to other installed applications. Installing or removing packages with rpm --nodeps can cause applications to misbehave and/or crash, and can cause serious package management problems or, possibly, system failure. For these reasons, it is best to heed such warnings; the package manager—whether RPM, Yum or PackageKit—shows us these warnings and suggests possible fixes because accounting for dependencies is critical. The Yum package manager can perform dependency resolution and fetch dependencies from online repositories, making it safer, easier and smarter than forcing rpm to carry out actions without regard to resolving dependencies.

B.2.5. Refrescamiento

Refrescar un paquete es parecido a actualizarlo con la diferencia de que solo se actualizan paquetes ya instalados. Teclee el siguiente comando en un intérprete de comandos de shell:
rpm -Fvh foo-2.0-1.fc17.x86_64.rpm
La opción de refrescamiento RPM compara las versiones de los paquetes especificados en la línea de comandos contra las versiones de los paquetes que ya han sido instalados en su sistema. Cuando la opción de refrescamiento de RPM procesa una versión más reciente de un paquete ya instalado, éste será actualizado a la versión más reciente. Sin embargo, la opción de refrescamiento de RPM no instalará un paquete si no existe un paquete previamente instalado del mismo nombre. Esto no es igual a la opción de actualización de RPM, ya que una actualización instalará los paquetes, no importa si ya está instalada o no una versión más antigua de los paquetes.
La opción de refrescamiento de RPM funciona ya sea con paquetes individuales o con un grupo de paquetes. Si usted acaba de descargar una gran cantidad de paquetes diferentes y sólo desea actualizar los paquetes que ya estaban instalados en su sistema, utilice esta opción. Así no tendrá que borrar ningún paquete no deseado antes de utilizar RPM.
In this case, issue the following with the *.rpm glob:
rpm -Fvh *.rpm
RPM then automatically upgrades only those packages that are already installed.

B.2.6. Consultas

The RPM database stores information about all RPM packages installed in your system. It is stored in the directory /var/lib/rpm/, and is used to query what packages are installed, what versions each package is, and to calculate any changes to any files in the package since installation, among other use cases.
To query this database, use the -q option. The rpm -q package name command displays the package name, version, and release number of the installed package <package_name>. For example, using rpm -q tree to query installed package tree might generate the following output:
tree-1.5.2.2-4.fc17.x86_64
You can also use the following Package Selection Options (which is a subheading in the RPM man page: see man rpm for details) to further refine or qualify your query:
  • -a — queries all currently installed packages.
  • -f <file_name> — queries the RPM database for which package owns <file_name> . Specify the absolute path of the file (for example, rpm -qf /bin/ls instead of rpm -qf ls).
  • -p <package_file> — queries the uninstalled package <package_file> .
There are a number of ways to specify what information to display about queried packages. The following options are used to select the type of information for which you are searching. These are called the Package Query Options.
  • -i displays package information including name, description, release, size, build date, install date, vendor, and other miscellaneous information.
  • -l displays the list of files that the package contains.
  • -s displays the state of all the files in the package.
  • -d displays a list of files marked as documentation (man pages, info pages, READMEs, etc.) in the package.
  • -c displays a list of files marked as configuration files. These are the files you edit after installation to adapt and customize the package to your system (for example, sendmail.cf, passwd, inittab, etc.).
For options that display lists of files, add -v to the command to display the lists in a familiar ls -l format.

B.2.7. Verificación

Verifying a package compares information about files installed from a package with the same information from the original package. Among other things, verifying compares the file size, MD5 sum, permissions, type, owner, and group of each file.
The command rpm -V verifies a package. You can use any of the Verify Options listed for querying to specify the packages you wish to verify. A simple use of verifying is rpm -V tree, which verifies that all the files in the tree package are as they were when they were originally installed. For example:
  • Para verificar un paquete que contiene un determinado archivo:
    rpm -Vf /usr/bin/tree
    
    In this example, /usr/bin/tree is the absolute path to the file used to query a package.
  • To verify ALL installed packages throughout the system (which will take some time):
    rpm -Va
    
  • Para verificar un paquete instalado contra un archivo de paquete RPM
    rpm -Vp tree-1.5.2.2-4.fc17.x86_64.rpm
    
    This command can be useful if you suspect that your RPM database is corrupt.
If everything verified properly, there is no output. If there are any discrepancies, they are displayed. The format of the output is a string of eight characters (a "c" denotes a configuration file) and then the file name. Each of the eight characters denotes the result of a comparison of one attribute of the file to the value of that attribute recorded in the RPM database. A single period (.) means the test passed. The following characters denote specific discrepancies:
  • 5 — MD5 checksum
  • S — file size
  • L — symbolic link
  • T — file modification time
  • D — device
  • U — user
  • G — group
  • M — mode (includes permissions and file type)
  • ? — unreadable file (file permission errors, for example)
Si ve alguna salida, determinar si debería quitar o reinstalar el paquete o resolver el problema de otra manera.

B.3. Revisando la firma de los paquetes

Si desea verificar que un paquete no fue corrompido o modificado, puede simplemente examinar el md5sum ingresando este comando en la terminal: (donde <archivo_rpm> es el nombre del paquete RPM):
rpm -K --nosignature <rpm_file> 
La salida <archivo_rpm>: rsa sha1 (md5) pgp md5 OK (especialmente la parte OK) indica que el archivo no fue corrompido durante la descarga. Para ver una salida más detallada, reemplace la opción -K con -Kvv en el comando.
Por otro lado, ¿qué tan confiable es el desarrollador que creó el paquete? Si el paquete está firmado con la clave GnuPG del desarrollador, sabrá que el desarrollador es quien realmente dice ser.
Un paquete RPM puede ser firmado utilizando Gnu Privacy Guard (o GnuPG),
GnuPG es una herramienta para la comunicación segura; es un reemplazo completo y libre para la tecnología PGP de encriptación, un programa de privacidad electrónica. Con GnuPG, se puede autenticar la validez de documentos y encriptar/desencriptar datos desde y hacia otros destinatarios. GnuPG es capaz de desencriptar y verificar PGP 5. También archivos x.
Durante la instalación, GnuPG se instala por defecto, lo que le habilita inmediatamente su uso para verificar cualquier paquete que descargue del Proyecto Fedora. Antes de hacerlo, necesita importar la clave Fedora correcta.

B.3.1. Importando llaves

Las claves de GnuPG de Fedora están en el directorio /etc/pki/rpm-gpg/. Para verificar un paquete del Proyecto Fedora, primero importe la clave correcta basada en la arquitectura de su procesador:
rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-x86_64
Para mostrar una lista de todas las llaves instaladas para la verificación de RPM, ejecuta el comando:
rpm -qa gpg-pubkey*
Para la clave del Proyecto Fedora, la salida dice:
gpg-pubkey-57bbccba-4a6f97af
Para mostrar detalles acerca de una clave específica, use rpm -qi seguido de la salida del comando anterior:
rpm -qi gpg-pubkey-57bbccba-4a6f97af

B.3.2. Verificación de la Firma de los Paquetes

Para verificar la firma GnuPG de un archivo RPM después de importar la clave GnuPG del constructor, use el siguiente comando (reemplace <rpm_file> con el nombre del paquete RPM):
rpm -K <rpm_file> 
Si todo sale bien, se muestra el siguiente mensaje: rsa sha1 (md5) pgp md5 OK. Esto significa que la firma del paquete fue verificada, que no está corrupta y, por lo tanto, es segura para instalar y usar.
Para más información, incluyendo una lista de las claves del Proyecto Fedora actualmente en uso y sus huellas dactilares, vea en http://fedoraproject.org/en/keys.

B.4. Ejemplos comunes y prácticos sobre el uso de RPM

RPM is a useful tool for both managing your system and diagnosing and fixing problems. The best way to make sense of all its options is to look at some examples.
  • Tal vez usted haya borrado algunos archivos accidentalmente, pero no está seguro de lo que ha eliminado. Si desea verificar su sistema entero y ver lo que podría hacer falta, podría intentarlo con el siguiente comando:
    rpm -Va
    
    Si faltan algunos archivos o parecen dañados, probablemente debería reinstalar el paquete o desinstalarlo y luego reinstalarlo.
  • En algunas ocasiones podría encontrarse con un archivo que no reconoce. Para saber a qué paquete pertenece introduzca:
    rpm -qf /usr/bin/ghostscript
    
    La salida es parecida a lo siguiente:
    ghostscript-8.70-1.fc17.x86_64
  • We can combine the above two examples in the following scenario. Say you are having problems with /usr/bin/paste. You would like to verify the package that owns that program, but you do not know which package owns paste. Enter the following command,
    rpm -Vf /usr/bin/paste
    
    y se verificará el paquete correcto.
  • ¿Desea encontrar más información sobre un determinado programa? Puede intentar el siguiente comando para localizar la documentación que acompañaba el paquete al cual pertenece ese programa:
    rpm -qdf /usr/bin/free
    
    El mensaje de salida será similar al presentado a continuación:
    /usr/share/doc/procps-3.2.8/BUGS
    /usr/share/doc/procps-3.2.8/FAQ
    /usr/share/doc/procps-3.2.8/NEWS
    /usr/share/doc/procps-3.2.8/TODO
    /usr/share/man/man1/free.1.gz
    /usr/share/man/man1/pgrep.1.gz
    /usr/share/man/man1/pkill.1.gz
    /usr/share/man/man1/pmap.1.gz
    /usr/share/man/man1/ps.1.gz
    /usr/share/man/man1/pwdx.1.gz
    /usr/share/man/man1/skill.1.gz
    /usr/share/man/man1/slabtop.1.gz
    /usr/share/man/man1/snice.1.gz
    /usr/share/man/man1/tload.1.gz
    /usr/share/man/man1/top.1.gz
    /usr/share/man/man1/uptime.1.gz
    /usr/share/man/man1/w.1.gz
    /usr/share/man/man1/watch.1.gz
    /usr/share/man/man5/sysctl.conf.5.gz
    /usr/share/man/man8/sysctl.8.gz
    /usr/share/man/man8/vmstat.8.gz
  • Podría encontrar un RPM nuevo y no saber para qué sirve. Para encontrar información sobre él, use el siguiente comando:
    rpm -qip crontabs-1.10-31.fc17.noarch.rpm
    
    El mensaje de salida será similar al presentado a continuación:
    Name        : crontabs                     Relocations: (not relocatable)
    Size        : 2486                             License: Public Domain and GPLv2
    Signature   : RSA/SHA1, Tue 11 Aug 2009 01:11:19 PM CEST, Key ID 9d1cc34857bbccba
    Packager    : Fedora Project
    Summary     : Root crontab files used to schedule the execution of programs
    Description :
    The crontabs package contains root crontab files and directories.
    You will need to install cron daemon to run the jobs from the crontabs.
    The cron daemon such as cronie or fcron checks the crontab files to
    see when particular commands are scheduled to be executed.  If commands
    are scheduled, it executes them.
    Crontabs handles a basic system function, so it should be installed on
    your system.
  • Perhaps you now want to see what files the crontabs RPM package installs. You would enter the following:
    rpm -qlp crontabs-1.10-31.fc17.noarch.rpm
    
    La salida será de la siguiente manera:
    /etc/cron.daily
    /etc/cron.hourly
    /etc/cron.monthly
    /etc/cron.weekly
    /etc/crontab
    /usr/bin/run-parts
    /usr/share/man/man4/crontabs.4.gz
Estos son solamente algunos ejemplos. Al usar RPM descubrirá muchos más de sus posibles usos.

B.5. Recursos adicionales

RPM es una utilidad muy compleja con muchas opciones y métodos para efectuar consultas, instalar, actualizar y eliminar paquetes. Consulte los siguientes recursos para saber más sobre RPM.

B.5.1. Documentación instalada

  • rpm --help — This command displays a quick reference of RPM parameters.
  • man rpm — The RPM man page gives more detail about RPM parameters than the rpm --help command.

B.5.2. Sitios Web útiles

El Sistema X Window

While the heart of Fedora is the kernel, for many users, the face of the operating system is the graphical environment provided by the X Window System, also called X.
Other windowing environments have existed in the UNIX world, including some that predate the release of the X Window System in June 1984. Nonetheless, X has been the default graphical environment for most UNIX-like operating systems, including Fedora, for many years.
The graphical environment for Fedora is supplied by the X.Org Foundation, an open source organization created to manage development and strategy for the X Window System and related technologies. X.Org is a large-scale, rapid-developing project with hundreds of developers around the world. It features a wide degree of support for a variety of hardware devices and architectures, and runs on myriad operating systems and platforms.
The X Window System uses a client-server architecture. Its main purpose is to provide network transparent window system, which runs on a wide range of computing and graphics machines. The X server (the Xorg binary) listens for connections from X client applications via a network or local loopback interface. The server communicates with the hardware, such as the video card, monitor, keyboard, and mouse. X client applications exist in the user space, creating a graphical user interface (GUI) for the user and passing user requests to the X server.

C.1. The X Server

Fedora 17 uses X server version, which includes several video drivers, EXA, and platform support enhancements over the previous release, among others. In addition, this release includes several automatic configuration features for the X server, as well as the generic input driver, evdev, that supports all input devices that the kernel knows about, including most mice and keyboards.
X11R7.1 was the first release to take specific advantage of the modularization of the X Window System. With it, X is split into logically distinct modules, which make it easier for open source developers to contribute code to the system.
In the current release, all libraries, headers, and binaries live under the /usr/ directory. The /etc/X11/ directory contains configuration files for X client and server applications. This includes configuration files for the X server itself, the X display managers, and many other base components.
The configuration file for the newer Fontconfig-based font architecture is still /etc/fonts/fonts.conf. For more information on configuring and adding fonts, refer to Sección C.4, “Fuentes”.
Because the X server performs advanced tasks on a wide array of hardware, it requires detailed information about the hardware it works on. The X server is able to automatically detect most of the hardware that it runs on and configure itself accordingly. Alternatively, hardware can be manually specified in configuration files.
The Fedora system installer, Anaconda, installs and configures X automatically, unless the X packages are not selected for installation. If there are any changes to the monitor, video card or other devices managed by the X server, most of the time, X detects and reconfigures these changes automatically. In rare cases, X must be reconfigured manually.

C.2. Entornos de escritorio y gestores de ventanas

Once an X server is running, X client applications can connect to it and create a GUI for the user. A range of GUIs are available with Fedora, from the rudimentary Tab Window Manager (twm) to the highly developed and interactive desktop environment (such as GNOME or KDE) that most Fedora users are familiar with.
To create the latter, more comprehensive GUI, two main classes of X client application must connect to the X server: a window manager and a desktop environment.

C.2.1. Entornos de escritorio

A desktop environment integrates various X clients to create a common graphical user environment and a development platform.
Desktop environments have advanced features allowing X clients and other running processes to communicate with one another, while also allowing all applications written to work in that environment to perform advanced tasks, such as drag-and-drop operations.
Fedora provides two desktop environments:
  • GNOME — The default desktop environment for Fedora based on the GTK+ 2 graphical toolkit.
  • KDE — An alternative desktop environment based on the Qt 4 graphical toolkit.
Both GNOME and KDE have advanced-productivity applications, such as word processors, spreadsheets, and Web browsers; both also provide tools to customize the look and feel of the GUI. Additionally, if both the GTK+ 2 and the Qt libraries are present, KDE applications can run in GNOME and vice versa.

C.2.2. Gestores de ventanas

Los gestores de ventanas son programas clientes de X que pueden ser parte del entorno de escritorio o pueden ser programas independientes. Su propósito principal es controlar la forma en que las ventanas gráficas son posicionadas, redimensionadas o desplazadas. Los gestores de ventanas controlan las barras de títulos, el comportamiento del foco, los vínculos del botón del ratón y teclas especificadas por el usuario.
The Fedora repositories provide five different window managers:
metacity
The Metacity window manager is the default window manager for GNOME. It is a simple and efficient window manager which supports custom themes. This window manager is automatically pulled in as a dependency when the GNOME desktop is installed.
kwin
The KWin window manager is the default window manager for KDE. It is an efficient window manager which supports custom themes. This window manager is automatically pulled in as a dependency when the KDE desktop is installed.
compiz
The Compiz compositing window manager is based on OpenGL and can use 3D graphics hardware to create fast compositing desktop effects for window management. Advanced features, such as a cube workspace, are implemented as loadable plug-ins. To run this window manager, you need to install the compiz package.
mwm
The Motif Window Manager (mwm) is a basic, stand-alone window manager. Since it is designed to be stand-alone, it should not be used in conjunction with GNOME or KDE. To run this window manager, you need to install the openmotif package.
twm
The minimalist Tab Window Manager (twm), which provides the most basic tool set among the available window managers, can be used either as a stand-alone or with a desktop environment. To run this window manager, you need to install the xorg-x11-twm package.

C.3. Archivos de configuración del servidor X

The X server is a single binary executable /usr/bin/Xorg; a symbolic link X pointing to this file is also provided. Associated configuration files are stored in the /etc/X11/ and /usr/share/X11/ directories.
The X Window System supports two different configuration schemes. Configuration files in the xorg.conf.d directory contain preconfigured settings from vendors and from distribution, and these files should not be edited by hand. Configuration in the xorg.conf file, on the other hand, is done completely by hand but is not necessary in most scenarios.

When do you need the xorg.conf file?

All necessary parameters for a display and peripherals are auto-detected and configured during installation. The configuration file for the X server, /etc/X11/xorg.conf, that was necessary in previous releases, is not supplied with the current release of the X Window System. It can still be useful to create the file manually to configure new hardware, to set up an environment with multiple video cards, or for debugging purposes.
The /usr/lib/xorg/modules/ (or /usr/lib64/xorg/modules/) directory contains X server modules that can be loaded dynamically at runtime. By default, only some modules in /usr/lib/xorg/modules/ are automatically loaded by the X server.
When Fedora 17 is installed, the configuration files for X are created using information gathered about the system hardware during the installation process by the HAL (Hardware Abstraction Layer) configuration back end. Whenever the X server is started, it asks HAL for the list of input devices and adds each of them with their respective driver. Whenever a new input device is plugged in, or an existing input device is removed, HAL notifies the X server about the change. Because of this notification system, devices using the mouse, kbd, or vmmouse driver configured in the xorg.conf file are, by default, ignored by the X server. Refer to Sección C.3.3.3, “The ServerFlags section” for further details. Additional configuration is provided in the /etc/X11/xorg.conf.d/ directory and it can override or augment any configuration that has been obtained through HAL.

C.3.1. The Structure of the Configuration

The format of the X configuration files is comprised of many different sections which address specific aspects of the system hardware. Each section begins with a Section "section-name" line, where "section-name" is the title for the section, and ends with an EndSection line. Each section contains lines that include option names and one or more option values. Some of these are sometimes enclosed in double quotes (").
Some options within the /etc/X11/xorg.conf file accept a boolean switch which turns the feature on or off. The acceptable values are:
  • 1, on, true, or yes — Turns the option on.
  • 0, off, false, or no — Turns the option off.
The following shows a typical configuration file for the keyboard. Lines beginning with a hash sign (#) are not read by the X server and are used for human-readable comments.
# This file is autogenerated by system-setup-keyboard. Any
# modifications will be lost.

Section "InputClass"
  Identifier  "system-setup-keyboard"
  MatchIsKeyboard "on"
  Option    "XkbModel"  "pc105"
  Option    "XkbLayout" "cz,us"
# Option    "XkbVariant"  "(null)"
  Option    "XkbOptions"  "terminate:ctrl_alt_bksp,grp:shifts_toggle,grp_led:scroll"
EndSection

C.3.2. The xorg.conf.d Directory

The X server supports two configuration directories. The /usr/share/X11/xorg.conf.d/ provides separate configuration files from vendors or third-party packages; changes to files in this directory may be overwritten by settings specified in the /etc/X11/xorg.conf file. The /etc/X11/xorg.conf.d/ directory stores user-specific configuration.
Files with the suffix .conf in configuration directories are parsed by the X server upon startup and are treated like part of the traditional xorg.conf configuration file. These files may contain one or more sections; for a description of the options in a section and the general layout of the configuration file, refer to Sección C.3.3, “The xorg.conf File” or to the xorg.conf(5) man page. The X server essentially treats the collection of configuration files as one big file with entries from xorg.conf at the end. Users are encouraged to put custom configuration into /etc/xorg.conf and leave the directory for configuration snippets provided by the distribution.

C.3.3. The xorg.conf File

In previous releases of the X Window System, /etc/X11/xorg.conf file was used to store initial setup for X. When a change occurred with the monitor, video card or other device managed by the X server, the file needed to be edited manually. In Fedora, there is rarely a need to manually create and edit the /etc/X11/xorg.conf file. Nevertheless, it is still useful to understand various sections and optional parameters available, especially when troubleshooting or setting up unusual hardware configuration.
In the following, some important sections are described in the order in which they appear in a typical /etc/X11/xorg.conf file. More detailed information about the X server configuration file can be found in the xorg.conf(5) man page. This section is mostly intended for advanced users as most configuration options described below are not needed in typical configuration scenarios.

C.3.3.1. The InputClass section

InputClass is a new type of configuration section that does not apply to a single device but rather to a class of devices, including hot-plugged devices. An InputClass section's scope is limited by the matches specified; in order to apply to an input device, all matches must apply to the device as seen in the example below:
Section "InputClass"
   Identifier      "touchpad catchall"
   MatchIsTouchpad "on"
   Driver           "synaptics"
EndSection
If this snippet is present in an xorg.conf file or an xorg.conf.d directory, any touchpad present in the system is assigned the synaptics driver.

Alphanumeric sorting in xorg.conf.d

Note that due to alphanumeric sorting of configuration files in the xorg.conf.d directory, the Driver setting in the example above overwrites previously set driver options. The more generic the class, the earlier it should be listed.
The match options specify which devices a section may apply to. To match a device, all match options must correspond. The following options are commonly used in the InputClass section:
  • MatchIsPointer, MatchIsKeyboard, MatchIsTouchpad, MatchIsTouchscreen, MatchIsJoystick — boolean options to specify a type of a device.
  • MatchProduct "product_name" — this option matches if the product_name substring occurs in the product name of the device.
  • MatchVendor "vendor_name" — this option matches if the vendor_name substring occurs in the vendor name of the device.
  • MatchDevicePath "/path/to/device" — this option matches any device if its device path corresponds to the patterns given in the "/path/to/device" template, for example /dev/input/event*. Refer to the fnmatch(3) man page for further details.
  • MatchTag "tag_pattern" — this option matches if at least one tag assigned by the HAL configuration back end matches the tag_pattern pattern.
A configuration file may have multiple InputClass sections. These sections are optional and are used to configure a class of input devices as they are automatically added. An input device can match more than one InputClass section. When arranging these sections, it is recommended to put generic matches above specific ones because each input class can override settings from a previous one if an overlap occurs.

C.3.3.2. The InputDevice section

Each InputDevice section configures one input device for the X server. Previously, systems typically had at least one InputDevice section for the keyboard, and most mouse settings were automatically detected.
With Fedora 17, no InputDevice configuration is needed for most setups, and the xorg-x11-drv-* input driver packages provide the automatic configuration through HAL. The default driver for both keyboards and mice is evdev.
The following example shows a typical InputDevice section for a keyboard:
Section "InputDevice"
  Identifier "Keyboard0"
  Driver "kbd"
  Option "XkbModel" "pc105"
  Option "XkbLayout" "us"
EndSection
The following entries are commonly used in the InputDevice section:
  • Identifier — Specifies a unique name for this InputDevice section. This is a required entry.
  • Driver — Specifies the name of the device driver X must load for the device. If the AutoAddDevices option is enabled (which is the default setting), any input device section with Driver "mouse" or Driver "kbd" will be ignored. This is necessary due to conflicts between the legacy mouse and keyboard drivers and the new evdev generic driver. Instead, the server will use the information from the back end for any input devices. Any custom input device configuration in the xorg.conf should be moved to the back end. In most cases, the back end will be HAL and the configuration location will be the /etc/X11/xorg.conf.d directory.
  • Option — Specifies necessary options pertaining to the device.
    A mouse may also be specified to override any auto-detected values for the device. The following options are typically included when adding a mouse in the xorg.conf file:
    • Protocol — Specifies the protocol used by the mouse, such as IMPS/2.
    • Device — Specifies the location of the physical device.
    • Emulate3Buttons — Specifies whether to allow a two-button mouse to act like a three-button mouse when both mouse buttons are pressed simultaneously.
    Consult the xorg.conf(5) man page for a complete list of valid options for this section.

C.3.3.3. The ServerFlags section

The optional ServerFlags section contains miscellaneous global X server settings. Any settings in this section may be overridden by options placed in the ServerLayout section (refer to Sección C.3.3.4, “ServerLayout for details).
Each entry within the ServerFlags section occupies a single line and begins with the term Option followed by an option enclosed in double quotation marks (").
The following is a sample ServerFlags section:
Section "ServerFlags"
  Option "DontZap" "true"
EndSection
La siguiente es una lista de las opciones más útiles:
  • "DontZap" "boolean" — When the value of <boolean> is set to true, this setting prevents the use of the Ctrl+Alt+Backspace key combination to immediately terminate the X server.

    X keyboard extension

    Even if this option is enabled, the key combination still must be configured in the X Keyboard Extension (XKB) map before it can be used. One way how to add the key combination to the map is to run the following command:
    setxkbmap -option "terminate:ctrl_alt_bksp"
  • "DontZoom" "boolean" — When the value of <boolean> is set to true, this setting prevents cycling through configured video resolutions using the Ctrl+Alt+Keypad-Plus and Ctrl+Alt+Keypad-Minus key combinations.
  • "AutoAddDevices" "boolean" — When the value of <boolean> is set to false, the server will not hot plug input devices and instead rely solely on devices configured in the xorg.conf file. Refer to Sección C.3.3.2, “The InputDevice section” for more information concerning input devices. This option is enabled by default and HAL (hardware abstraction layer) is used as a back end for device discovery.

C.3.3.4. ServerLayout

The ServerLayout section binds together the input and output devices controlled by the X server. At a minimum, this section must specify one input device and one output device. By default, a monitor (output device) and a keyboard (input device) are specified.
The following example shows a typical ServerLayout section:
Section "ServerLayout"
  Identifier "Default Layout"
  Screen 0 "Screen0" 0 0
  InputDevice "Mouse0" "CorePointer"
  InputDevice "Keyboard0" "CoreKeyboard"
EndSection
The following entries are commonly used in the ServerLayout section:
  • Identifier — Specifies a unique name for this ServerLayout section.
  • Screen — Specifies the name of a Screen section to be used with the X server. More than one Screen option may be present.
    The following is an example of a typical Screen entry:
    Screen 0 "Screen0" 0 0
    The first number in this example Screen entry (0) indicates that the first monitor connector, or head on the video card, uses the configuration specified in the Screen section with the identifier "Screen0".
    An example of a Screen section with the identifier "Screen0" can be found in Sección C.3.3.8, “The Screen section”.
    If the video card has more than one head, another Screen entry with a different number and a different Screen section identifier is necessary.
    The numbers to the right of "Screen0" give the absolute X and Y coordinates for the upper left corner of the screen (0 0 by default).
  • InputDevice — Specifies the name of an InputDevice section to be used with the X server.
    It is advisable that there be at least two InputDevice entries: one for the default mouse and one for the default keyboard. The options CorePointer and CoreKeyboard indicate that these are the primary mouse and keyboard. If the AutoAddDevices option is enabled, this entry needs not to be specified in the ServerLayout section. If the AutoAddDevices option is disabled, both mouse and keyboard are auto-detected with the default values.
  • Option "option-name" — An optional entry which specifies extra parameters for the section. Any options listed here override those listed in the ServerFlags section.
    Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.
It is possible to put more than one ServerLayout section in the /etc/X11/xorg.conf file. By default, the server only reads the first one it encounters, however. If there is an alternative ServerLayout section, it can be specified as a command line argument when starting an X session; as in the Xorg -layout <layoutname> command.

C.3.3.5. The Files section

The Files section sets paths for services vital to the X server, such as the font path. This is an optional section, as these paths are normally detected automatically. This section can be used to override automatically detected values.
The following example shows a typical Files section:
Section "Files"
  RgbPath "/usr/share/X11/rgb.txt"
  FontPath "unix/:7100"
EndSection
The following entries are commonly used in the Files section:
  • ModulePath — An optional parameter which specifies alternate directories which store X server modules.

C.3.3.6. The Monitor section

Each Monitor section configures one type of monitor used by the system. This is an optional entry as most monitors are now detected automatically.
This example shows a typical Monitor section for a monitor:
Section "Monitor"
  Identifier "Monitor0"
  VendorName "Monitor Vendor"
  ModelName "DDC Probed Monitor - ViewSonic G773-2"
  DisplaySize 320 240
  HorizSync 30.0 - 70.0
  VertRefresh 50.0 - 180.0
EndSection
The following entries are commonly used in the Monitor section:
  • Identifier — Specifies a unique name for this Monitor section. This is a required entry.
  • VendorName — An optional parameter which specifies the vendor of the monitor.
  • ModelName — An optional parameter which specifies the monitor's model name.
  • DisplaySize — An optional parameter which specifies, in millimeters, the physical size of the monitor's picture area.
  • HorizSync — Specifies the range of horizontal sync frequencies compatible with the monitor, in kHz. These values help the X server determine the validity of built-in or specified Modeline entries for the monitor.
  • VertRefresh — Specifies the range of vertical refresh frequencies supported by the monitor, in kHz. These values help the X server determine the validity of built-in or specified Modeline entries for the monitor.
  • Modeline — An optional parameter which specifies additional video modes for the monitor at particular resolutions, with certain horizontal sync and vertical refresh resolutions. Refer to the xorg.conf(5) man page for a more detailed explanation of Modeline entries.
  • Option "option-name" — An optional entry which specifies extra parameters for the section. Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.

C.3.3.7. The Device section

Each Device section configures one video card on the system. While one Device section is the minimum, additional instances may occur for each video card installed on the machine.
The following example shows a typical Device section for a video card:
Section "Device"
  Identifier "Videocard0"
  Driver "mga"
  VendorName "Videocard vendor"
  BoardName "Matrox Millennium G200"
  VideoRam 8192
  Option "dpms"
EndSection
The following entries are commonly used in the Device section:
  • Identifier — Specifies a unique name for this Device section. This is a required entry.
  • Driver — Specifies which driver the X server must load to utilize the video card. A list of drivers can be found in /usr/share/hwdata/videodrivers, which is installed with the hwdata package.
  • VendorName — An optional parameter which specifies the vendor of the video card.
  • BoardName — An optional parameter which specifies the name of the video card.
  • VideoRam — An optional parameter which specifies the amount of RAM available on the video card, in kilobytes. This setting is only necessary for video cards the X server cannot probe to detect the amount of video RAM.
  • BusID — An entry which specifies the bus location of the video card. On systems with only one video card a BusID entry is optional and may not even be present in the default /etc/X11/xorg.conf file. On systems with more than one video card, however, a BusID entry is required.
  • Screen — An optional entry which specifies which monitor connector or head on the video card the Device section configures. This option is only useful for video cards with multiple heads.
    If multiple monitors are connected to different heads on the same video card, separate Device sections must exist and each of these sections must have a different Screen value.
    Values for the Screen entry must be an integer. The first head on the video card has a value of 0. The value for each additional head increments this value by one.
  • Option "option-name" — An optional entry which specifies extra parameters for the section. Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.
    One of the more common options is "dpms" (for Display Power Management Signaling, a VESA standard), which activates the Service Star energy compliance setting for the monitor.

C.3.3.8. The Screen section

Each Screen section binds one video card (or video card head) to one monitor by referencing the Device section and the Monitor section for each. While one Screen section is the minimum, additional instances may occur for each video card and monitor combination present on the machine.
The following example shows a typical Screen section:
Section "Screen"
  Identifier "Screen0"
  Device "Videocard0"
  Monitor "Monitor0"
  DefaultDepth 16

  SubSection "Display"
    Depth 24
    Modes "1280x1024" "1280x960" "1152x864" "1024x768" "800x600" "640x480"
  EndSubSection

  SubSection "Display"
    Depth 16
    Modes "1152x864" "1024x768" "800x600" "640x480"
  EndSubSection
EndSection
The following entries are commonly used in the Screen section:
  • Identifier — Specifies a unique name for this Screen section. This is a required entry.
  • Device — Specifies the unique name of a Device section. This is a required entry.
  • Monitor — Specifies the unique name of a Monitor section. This is only required if a specific Monitor section is defined in the xorg.conf file. Normally, monitors are detected automatically.
  • DefaultDepth — Specifies the default color depth in bits. In the previous example, 16 (which provides thousands of colors) is the default. Only one DefaultDepth entry is permitted, although this can be overridden with the Xorg command line option -depth <n>, where <n> is any additional depth specified.
  • SubSection "Display" — Specifies the screen modes available at a particular color depth. The Screen section can have multiple Display subsections, which are entirely optional since screen modes are detected automatically.
    This subsection is normally used to override auto-detected modes.
  • Option "option-name" — An optional entry which specifies extra parameters for the section. Replace <option-name> with a valid option listed for this section in the xorg.conf(5) man page.

C.3.3.9. The DRI section

The optional DRI section specifies parameters for the Direct Rendering Infrastructure (DRI). DRI is an interface which allows 3D software applications to take advantage of 3D hardware acceleration capabilities built into most modern video hardware. In addition, DRI can improve 2D performance via hardware acceleration, if supported by the video card driver.
This section is rarely used, as the DRI Group and Mode are automatically initialized to default values. If a different Group or Mode is needed, then adding this section to the xorg.conf file will override the default values.
The following example shows a typical DRI section:
Section "DRI"
  Group 0
  Mode 0666
EndSection
Since different video cards use DRI in different ways, do not add to this section without first referring to http://dri.freedesktop.org/wiki/.

C.4. Fuentes

Fedora uses Fontconfig subsystem to manage and display fonts under the X Window System. It simplifies font management and provides advanced display features, such as anti-aliasing. This system is used automatically for applications programmed using the Qt 3 or GTK+ 2 graphical toolkits, or their newer versions.
The Fontconfig font subsystem allows applications to directly access fonts on the system and use the X FreeType interface library (Xft) or other rendering mechanisms to render Fontconfig fonts with advanced features such as anti-aliasing. Graphical applications can use the Xft library with Fontconfig to draw text to the screen.

Font configuration

Fontconfig uses the /etc/fonts/fonts.conf configuration file, which should not be edited by hand.

Fonts group

Any system where the user expects to run remote X applications needs to have the fonts group installed. This can be done by selecting the group in the installer, and also by running the yum groupinstall fonts command after installation.

C.4.1. Añadir fuentes a Fontconfig

Adding new fonts to the Fontconfig subsystem is a straightforward process:
  1. To add fonts for an individual user, copy the new fonts into the .fonts/ directory in the user's home directory.
    To add fonts system-wide, copy the new fonts into the /usr/share/fonts/ directory. It is a good idea to create a new subdirectory, such as local/ or similar, to help distinguish between user-installed and default fonts.
  2. Run the fc-cache command as root to update the font information cache:
    fc-cache <path-to-font-directory>
    In this command, replace <path-to-font-directory> with the directory containing the new fonts (either /usr/share/fonts/local/ or /home/<user>/.fonts/).

Interactive font installation

Individual users may also install fonts interactively, by typing fonts:/// into the Nautilus address bar, and dragging the new font files there.

C.5. Runlevels and X

In most cases, the Fedora installer configures a machine to boot into a graphical login environment, known as runlevel 5. It is possible, however, to boot into a text-only multi-user mode called runlevel 3 and begin an X session from there.
The following subsections review how X starts up in both runlevel 3 and runlevel 5.

C.5.1. Runlevel 3

When in runlevel 3, the best way to start an X session is to log in and type startx. The startx command is a front-end to the xinit command, which launches the X server (Xorg) and connects X client applications to it. Because the user is already logged into the system at runlevel 3, startx does not launch a display manager or authenticate users. Refer to Sección C.5.2, “Runlevel 5” for more information about display managers.
  1. When the startx command is executed, it searches for the .xinitrc file in the user's home directory to define the desktop environment and possibly other X client applications to run. If no .xinitrc file is present, it uses the system default /etc/X11/xinit/xinitrc file instead.
  2. The default xinitrc script then searches for user-defined files and default system files, including .Xresources, .Xmodmap, and .Xkbmap in the user's home directory, and Xresources, Xmodmap, and Xkbmap in the /etc/X11/ directory. The Xmodmap and Xkbmap files, if they exist, are used by the xmodmap utility to configure the keyboard. The Xresources file is read to assign specific preference values to applications.
  3. After setting the above options, the xinitrc script executes all scripts located in the /etc/X11/xinit/xinitrc.d/ directory. One important script in this directory is xinput.sh, which configures settings such as the default language.
  4. The xinitrc script attempts to execute .Xclients in the user's home directory and turns to /etc/X11/xinit/Xclients if it cannot be found. The purpose of the Xclients file is to start the desktop environment or, possibly, just a basic window manager. The .Xclients script in the user's home directory starts the user-specified desktop environment in the .Xclients-default file. If .Xclients does not exist in the user's home directory, the standard /etc/X11/xinit/Xclients script attempts to start another desktop environment, trying GNOME first, then KDE, followed by twm.
When in runlevel 3, the user is returned to a text mode user session after ending an X session.

C.5.2. Runlevel 5

When the system boots into runlevel 5, a special X client application called a display manager is launched. A user must authenticate using the display manager before any desktop environment or window managers are launched.
Depending on the desktop environments installed on the system, three different display managers are available to handle user authentication.
  • GDM (GNOME Display Manager) — The default display manager for Fedora. GNOME allows the user to configure language settings, shutdown, restart or log in to the system.
  • KDM — KDE's display manager which allows the user to shutdown, restart or log in to the system.
  • xdm (X Window Display Manager) — A very basic display manager which only lets the user log in to the system.
When booting into runlevel 5, the /etc/X11/prefdm script determines the preferred display manager by referencing the /etc/sysconfig/desktop file. A list of options for this file is available in this file:
/usr/share/doc/initscripts-<version-number>/sysconfig.txt
where <version-number> is the version number of the initscripts package.
Each of the display managers reference the /etc/X11/xdm/Xsetup_0 file to set up the login screen. Once the user logs into the system, the /etc/X11/xdm/GiveConsole script runs to assign ownership of the console to the user. Then, the /etc/X11/xdm/Xsession script runs to accomplish many of the tasks normally performed by the xinitrc script when starting X from runlevel 3, including setting system and user resources, as well as running the scripts in the /etc/X11/xinit/xinitrc.d/ directory.
Users can specify which desktop environment they want to use when they authenticate using the GNOME or KDE display managers by selecting it from the Sessions menu item accessed by selecting SystemPreferencesMore PreferencesSessions. If the desktop environment is not specified in the display manager, the /etc/X11/xdm/Xsession script checks the .xsession and .Xclients files in the user's home directory to decide which desktop environment to load. As a last resort, the /etc/X11/xinit/Xclients file is used to select a desktop environment or window manager to use in the same way as runlevel 3.
When the user finishes an X session on the default display (:0) and logs out, the /etc/X11/xdm/TakeConsole script runs and reassigns ownership of the console to the root user. The original display manager, which continues running after the user logged in, takes control by spawning a new display manager. This restarts the X server, displays a new login window, and starts the entire process over again.
The user is returned to the display manager after logging out of X from runlevel 5.
For more information on how display managers control user authentication, refer to the /usr/share/doc/gdm-<version-number>/README , where <version-number> is the version number for the gdm package installed, or the xdm man page.

C.6. Recursos adicionales

Se podría decir mucho más sobre el servidor X, los clientes que se conectan a él y la variada gama de entornos de escritorio y gestores de ventanas.

C.6.1. Documentación instalada

  • /usr/share/X11/doc/ — contains detailed documentation on the X Window System architecture, as well as how to get additional information about the Xorg project as a new user.
  • /usr/share/doc/gdm-<version-number>/README — contains information on how display managers control user authentication.
  • man xorg.conf — Contains information about the xorg.conf configuration files, including the meaning and syntax for the different sections within the files.
  • man Xorg — Describes the Xorg display server.

C.6.2. Sitios Web útiles

  • http://www.X.org/ — Home page of the X.Org Foundation, which produces major releases of the X Window System bundled with Fedora to control the necessary hardware and provide a GUI environment.
  • http://dri.sourceforge.net/ — Home page of the DRI (Direct Rendering Infrastructure) project. The DRI is the core hardware 3D acceleration component of X.
  • http://www.gnome.org/ — Home of the GNOME project.
  • http://www.kde.org/ — Home of the KDE desktop environment.

The sysconfig Directory

This appendix outlines some of the files and directories found in the /etc/sysconfig/ directory, their function, and their contents. The information in this appendix is not intended to be complete, as many of these files have a variety of options that are only used in very specific or rare circumstances.

The content of the /etc/sysconfig/ directory

The actual content of your /etc/sysconfig/ directory depends on the programs you have installed on your machine. To find the name of the package the configuration file belongs to, type the following at a shell prompt:
~]$ yum provides /etc/sysconfig/filename 
Refer to Sección 4.2.4, “Installing Packages” for more information on how to install new packages in Fedora.

D.1. Files in the /etc/sysconfig/ Directory

The following sections offer descriptions of files normally found in the /etc/sysconfig/ directory.

D.1.1. /etc/sysconfig/arpwatch

The /etc/sysconfig/arpwatch file is used to pass arguments to the arpwatch daemon at boot time. By default, it contains the following option:
OPTIONS=value
Additional options to be passed to the arpwatch daemon. For example:
OPTIONS="-u arpwatch -e root -s 'root (Arpwatch)'"

D.1.2. /etc/sysconfig/authconfig

The /etc/sysconfig/authconfig file sets the authorization to be used on the host. By default, it contains the following options:
USEMKHOMEDIR=boolean
A boolean to enable (yes) or disable (no) creating a home directory for a user on the first login. For example:
USEMKHOMEDIR=no
USEPAMACCESS=boolean
A boolean to enable (yes) or disable (no) the PAM authentication. For example:
USEPAMACCESS=no
USESSSDAUTH=boolean
A boolean to enable (yes) or disable (no) the SSSD authentication. For example:
USESSSDAUTH=no
USESHADOW=boolean
A boolean to enable (yes) or disable (no) shadow passwords. For example:
USESHADOW=yes
USEWINBIND=boolean
A boolean to enable (yes) or disable (no) using Winbind for user account configuration. For example:
USEWINBIND=no
USEDB=boolean
A boolean to enable (yes) or disable (no) the FAS authentication. For example:
USEDB=no
USEFPRINTD=boolean
A boolean to enable (yes) or disable (no) the fingerprint authentication. For example:
USEFPRINTD=yes
FORCESMARTCARD=boolean
A boolean to enable (yes) or disable (no) enforcing the smart card authentication. For example:
FORCESMARTCARD=no
PASSWDALGORITHM=value
The password algorithm. The value can be bigcrypt, descrypt, md5, sha256, or sha512. For example:
PASSWDALGORITHM=sha512
USELDAPAUTH=boolean
A boolean to enable (yes) or disable (no) the LDAP authentication. For example:
USELDAPAUTH=no
USELOCAUTHORIZE=boolean
A boolean to enable (yes) or disable (no) the local authorization for local users. For example:
USELOCAUTHORIZE=yes
USECRACKLIB=boolean
A boolean to enable (yes) or disable (no) using the CrackLib. For example:
USECRACKLIB=yes
USEWINBINDAUTH=boolean
A boolean to enable (yes) or disable (no) the Winbind authentication. For example:
USEWINBINDAUTH=no
USESMARTCARD=boolean
A boolean to enable (yes) or disable (no) the smart card authentication. For example:
USESMARTCARD=no
USELDAP=boolean
A boolean to enable (yes) or disable (no) using LDAP for user account configuration. For example:
USELDAP=no
USENIS=boolean
A boolean to enable (yes) or disable (no) using NIS for user account configuration. For example:
USENIS=no
USEKERBEROS=boolean
A boolean to enable (yes) or disable (no) the Kerberos authentication. For example:
USEKERBEROS=no
USESYSNETAUTH=boolean
A boolean to enable (yes) or disable (no) authenticating system accounts with network services. For example:
USESYSNETAUTH=no
USESMBAUTH=boolean
A boolean to enable (yes) or disable (no) the SMB authentication. For example:
USESMBAUTH=no
USESSSD=boolean
A boolean to enable (yes) or disable (no) using SSSD for obtaining user information. For example:
USESSSD=no
USEHESIOD=boolean
A boolean to enable (yes) or disable (no) using the Hesoid name service. For example:
USEHESIOD=no
Refer to Capítulo 9, Configuring Authentication for more information on this topic.

D.1.3. /etc/sysconfig/autofs

The /etc/sysconfig/autofs file defines custom options for the automatic mounting of devices. This file controls the operation of the automount daemons, which automatically mount file systems when you use them and unmount them after a period of inactivity. File systems can include network file systems, CD-ROM drives, diskettes, and other media.
By default, it contains the following options:
MASTER_MAP_NAME=value
The default name for the master map. For example:
MASTER_MAP_NAME="auto.master"
TIMEOUT=value
The default mount timeout. For example:
TIMEOUT=300
NEGATIVE_TIMEOUT=value
The default negative timeout for unsuccessful mount attempts. For example:
NEGATIVE_TIMEOUT=60
MOUNT_WAIT=value
The time to wait for a response from mount. For example:
MOUNT_WAIT=-1
UMOUNT_WAIT=value
The time to wait for a response from umount. For example:
UMOUNT_WAIT=12
BROWSE_MODE=boolean
A boolean to enable (yes) or disable (no) browsing the maps. For example:
BROWSE_MODE="no"
MOUNT_NFS_DEFAULT_PROTOCOL=value
The default protocol to be used by mount.nfs. For example:
MOUNT_NFS_DEFAULT_PROTOCOL=4
APPEND_OPTIONS=boolean
A boolean to enable (yes) or disable (no) appending the global options instead of replacing them. For example:
APPEND_OPTIONS="yes"
LOGGING=value
The default logging level. The value has to be either none, verbose, or debug. For example:
LOGGING="none"
LDAP_URI=value
A space-separated list of server URIs in the form of protocol://server . For example:
LDAP_URI="ldaps://ldap.example.com/"
LDAP_TIMEOUT=value
The synchronous API calls timeout. For example:
LDAP_TIMEOUT=-1
LDAP_NETWORK_TIMEOUT=value
The network response timeout. For example:
LDAP_NETWORK_TIMEOUT=8
SEARCH_BASE=value
The base Distinguished Name (DN) for the map search. For example:
SEARCH_BASE=""
AUTH_CONF_FILE=value
The default location of the SASL authentication configuration file. For example:
AUTH_CONF_FILE="/etc/autofs_ldap_auth.conf"
MAP_HASH_TABLE_SIZE=value
The hash table size for the map cache. For example:
MAP_HASH_TABLE_SIZE=1024
USE_MISC_DEVICE=boolean
A boolean to enable (yes) or disable (no) using the autofs miscellaneous device. For example:
USE_MISC_DEVICE="yes"
OPTIONS=value
Additional options to be passed to the LDAP daemon. For example:
OPTIONS=""

D.1.4. /etc/sysconfig/clock

The /etc/sysconfig/clock file controls the interpretation of values read from the system hardware clock. It is used by the Date and Time configuration tool, and should not be edited by hand. By default, it contains the following option:
ZONE=value
The time zone file under /usr/share/zoneinfo that /etc/localtime is a copy of. For example:
ZONE="Europe/Prague"
Refer to Sección 2.1, “Usando la herramienta de configuración de fecha y hora” for more information on the Date and Time configuration tool and its usage.

D.1.5. /etc/sysconfig/dhcpd

The /etc/sysconfig/dhcpd file is used to pass arguments to the dhcpd daemon at boot time. By default, it contains the following options:
DHCPDARGS=value
Additional options to be passed to the dhcpd daemon. For example:
DHCPDARGS=
Refer to Capítulo 11, DHCP Servers for more information on DHCP and its usage.

D.1.6. /etc/sysconfig/firstboot

The /etc/sysconfig/firstboot file defines whether to run the firstboot utility. By default, it contains the following option:
RUN_FIRSTBOOT=boolean
A boolean to enable (YES) or disable (NO) running the firstboot program. For example:
RUN_FIRSTBOOT=NO
The first time the system boots, the init program calls the /etc/rc.d/init.d/firstboot script, which looks for the /etc/sysconfig/firstboot file. If this file does not contain the RUN_FIRSTBOOT=NO option, the firstboot program is run, guiding a user through the initial configuration of the system.

You can run the firstboot program again

To start the firstboot program the next time the system boots, change the value of RUN_FIRSTBOOT option to YES, and type the following at a shell prompt as root:
~]# systemctl enable firstboot.service

D.1.7. /etc/sysconfig/i18n

The /etc/sysconfig/i18n configuration file defines the default language, any supported languages, and the default system font. By default, it contains the following options:
LANG=value
The default language. For example:
LANG="en_US.UTF-8"
SUPPORTED=value
A colon-separated list of supported languages. For example:
SUPPORTED="en_US.UTF-8:en_US:en"
SYSFONT=value
The default system font. For example:
SYSFONT="latarcyrheb-sun16"

D.1.8. /etc/sysconfig/init

The /etc/sysconfig/init file controls how the system appears and functions during the boot process. By default, it contains the following options:
BOOTUP=value
The bootup style. The value has to be either color (the standard color boot display), verbose (an old style display which provides more information), or anything else for the new style display, but without ANSI formatting. For example:
BOOTUP=color
RES_COL=value
The number of the column in which the status labels start. For example:
RES_COL=60
MOVE_TO_COL=value
The terminal sequence to move the cursor to the column specified in RES_COL (see above). For example:
MOVE_TO_COL="echo -en \\033[${RES_COL}G"
SETCOLOR_SUCCESS=value
The terminal sequence to set the success color. For example:
SETCOLOR_SUCCESS="echo -en \\033[0;32m"
SETCOLOR_FAILURE=value
The terminal sequence to set the failure color. For example:
SETCOLOR_FAILURE="echo -en \\033[0;31m"
SETCOLOR_WARNING=value
The terminal sequence to set the warning color. For example:
SETCOLOR_WARNING="echo -en \\033[0;33m"
SETCOLOR_NORMAL=value
The terminal sequence to set the default color. For example:
SETCOLOR_NORMAL="echo -en \\033[0;39m"
LOGLEVEL=value
The initial console logging level. The value has to be in the range from 1 (kernel panics only) to 8 (everything, including the debugging information). For example:
LOGLEVEL=3
PROMPT=boolean
A boolean to enable (yes) or disable (no) the hotkey interactive startup. For example:
PROMPT=yes
AUTOSWAP=boolean
A boolean to enable (yes) or disable (no) probing for devices with swap signatures. For example:
AUTOSWAP=no
ACTIVE_CONSOLES=value
The list of active consoles. For example:
ACTIVE_CONSOLES=/dev/tty[1-6]
SINGLE=value
The single-user mode type. The value has to be either /sbin/sulogin (a user will be prompted for a password to log in), or /sbin/sushell (the user will be logged in directly). For example:
SINGLE=/sbin/sushell

D.1.9. /etc/sysconfig/ip6tables-config

The /etc/sysconfig/ip6tables-config file stores information used by the kernel to set up IPv6 packet filtering at boot time or whenever the ip6tables service is started. Note that you should not modify it unless you are familiar with ip6tables rules. By default, it contains the following options:
IP6TABLES_MODULES=value
A space-separated list of helpers to be loaded after the firewall rules are applied. For example:
IP6TABLES_MODULES="ip_nat_ftp ip_nat_irc"
IP6TABLES_MODULES_UNLOAD=boolean
A boolean to enable (yes) or disable (no) module unloading when the firewall is stopped or restarted. For example:
IP6TABLES_MODULES_UNLOAD="yes"
IP6TABLES_SAVE_ON_STOP=boolean
A boolean to enable (yes) or disable (no) saving the current firewall rules when the firewall is stopped. For example:
IP6TABLES_SAVE_ON_STOP="no"
IP6TABLES_SAVE_ON_RESTART=boolean
A boolean to enable (yes) or disable (no) saving the current firewall rules when the firewall is restarted. For example:
IP6TABLES_SAVE_ON_RESTART="no"
IP6TABLES_SAVE_COUNTER=boolean
A boolean to enable (yes) or disable (no) saving the rule and chain counters. For example:
IP6TABLES_SAVE_COUNTER="no"
IP6TABLES_STATUS_NUMERIC=boolean
A boolean to enable (yes) or disable (no) printing IP addresses and port numbers in a numeric format in the status output. For example:
IP6TABLES_STATUS_NUMERIC="yes"
IP6TABLES_STATUS_VERBOSE=boolean
A boolean to enable (yes) or disable (no) printing information about the number of packets and bytes in the status output. For example:
IP6TABLES_STATUS_VERBOSE="no"
IP6TABLES_STATUS_LINENUMBERS=boolean
A boolean to enable (yes) or disable (no) printing line numbers in the status output. For example:
IP6TABLES_STATUS_LINENUMBERS="yes"

Use the ip6tables command to create the rules

You can create the rules manually using the ip6tables command. Once created, type the following at a shell prompt:
~]# service ip6tables save
This will add the rules to /etc/sysconfig/ip6tables. Once this file exists, any firewall rules saved in it persist through a system reboot or a service restart.

D.1.10. /etc/sysconfig/keyboard

The /etc/sysconfig/keyboard file controls the behavior of the keyboard. By default, it contains the following options:
KEYTABLE=value
The name of a keytable file. The files that can be used as keytables start in the /lib/kbd/keymaps/i386/ directory, and branch into different keyboard layouts from there, all labeled value.kmap.gz. The first file name that matches the KEYTABLE setting is used. For example:
KEYTABLE="us"
MODEL=value
The keyboard model. For example:
MODEL="pc105+inet"
LAYOUT=value
The keyboard layout. For example:
LAYOUT="us"
KEYBOARDTYPE=value
The keyboard type. Allowed values are pc (a PS/2 keyboard), or sun (a Sun keyboard). For example:
KEYBOARDTYPE="pc"

D.1.11. /etc/sysconfig/ldap

The /etc/sysconfig/ldap file holds the basic configuration for the LDAP server. By default, it contains the following options:
SLAPD_OPTIONS=value
Additional options to be passed to the slapd daemon. For example:
SLAPD_OPTIONS="-4"
SLURPD_OPTIONS=value
Additional options to be passed to the slurpd daemon. For example:
SLURPD_OPTIONS=""
SLAPD_LDAP=boolean
A boolean to enable (yes) or disable (no) using the LDAP over TCP (that is, ldap:///). For example:
SLAPD_LDAP="yes"
SLAPD_LDAPI=boolean
A boolean to enable (yes) or disable (no) using the LDAP over IPC (that is, ldapi:///). For example:
SLAPD_LDAPI="no"
SLAPD_LDAPS=boolean
A boolean to enable (yes) or disable (no) using the LDAP over TLS (that is, ldaps:///). For example:
SLAPD_LDAPS="no"
SLAPD_URLS=value
A space-separated list of URLs. For example:
SLAPD_URLS="ldapi:///var/lib/ldap_root/ldapi ldapi:/// ldaps:///"
SLAPD_SHUTDOWN_TIMEOUT=value
The time to wait for slapd to shut down. For example:
SLAPD_SHUTDOWN_TIMEOUT=3
SLAPD_ULIMIT_SETTINGS=value
The parameters to be passed to ulimit before the slapd daemon is started. For example:
SLAPD_ULIMIT_SETTINGS=""
Refer to Sección 15.1, “OpenLDAP” for more information on LDAP and its configuration.

D.1.12. /etc/sysconfig/named

The /etc/sysconfig/named file is used to pass arguments to the named daemon at boot time. By default, it contains the following options:
ROOTDIR=value
The chroot environment under which the named daemon runs. The value has to be a full directory path. For example:
ROOTDIR="/var/named/chroot"
Note that the chroot environment has to be configured first (type info chroot at a shell prompt for more information).
OPTIONS=value
Additional options to be passed to named. For example:
OPTIONS="-6"
Note that you should not use the -t option. Instead, use ROOTDIR as described above.
KEYTAB_FILE=value
The keytab file name. For example:
KEYTAB_FILE="/etc/named.keytab"
Refer to Sección 12.2, “BIND” for more information on the BIND DNS server and its configuration.

D.1.13. /etc/sysconfig/network

The /etc/sysconfig/network file is used to specify information about the desired network configuration. By default, it contains the following options:
NETWORKING=boolean
A boolean to enable (yes) or disable (no) the networking. For example:
NETWORKING=yes
HOSTNAME=value
The hostname of the machine. For example:
HOSTNAME=penguin.example.com
GATEWAY=value
The IP address of the network's gateway. For example:
GATEWAY=192.168.1.0

Avoid using custom init scripts

Do not use custom init scripts to configure network settings. When performing a post-boot network service restart, custom init scripts configuring network settings that are run outside of the network init script lead to unpredictable results.

D.1.14. /etc/sysconfig/ntpd

The /etc/sysconfig/ntpd file is used to pass arguments to the ntpd daemon at boot time. By default, it contains the following option:
OPTIONS=value
Additional options to be passed to ntpd. For example:
OPTIONS="-u ntp:ntp -p /var/run/ntpd.pid -g"
Refer to Sección 2.2.3, “Configurando el Protocolo de Tiempo en Red” for more information on how to configure the ntpd daemon.

D.1.15. /etc/sysconfig/quagga

The /etc/sysconfig/quagga file holds the basic configuration for Quagga daemons. By default, it contains the following options:
QCONFDIR=value
The directory with the configuration files for Quagga daemons. For example:
QCONFDIR="/etc/quagga"
BGPD_OPTS=value
Additional options to be passed to the bgpd daemon. For example:
BGPD_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/bgpd.conf"
OSPF6D_OPTS=value
Additional options to be passed to the ospf6d daemon. For example:
OSPF6D_OPTS="-A ::1 -f ${QCONFDIR}/ospf6d.conf"
OSPFD_OPTS=value
Additional options to be passed to the ospfd daemon. For example:
OSPFD_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/ospfd.conf"
RIPD_OPTS=value
Additional options to be passed to the ripd daemon. For example:
RIPD_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/ripd.conf"
RIPNGD_OPTS=value
Additional options to be passed to the ripngd daemon. For example:
RIPNGD_OPTS="-A ::1 -f ${QCONFDIR}/ripngd.conf"
ZEBRA_OPTS=value
Additional options to be passed to the zebra daemon. For example:
ZEBRA_OPTS="-A 127.0.0.1 -f ${QCONFDIR}/zebra.conf"
ISISD_OPTS=value
Additional options to be passed to the isisd daemon. For example:
ISISD_OPTS="-A ::1 -f ${QCONFDIR}/isisd.conf"
WATCH_OPTS=value
Additional options to be passed to the watchquagga daemon. For example:
WATCH_OPTS="-Az -b_ -r/sbin/service_%s_restart -s/sbin/service_%s_start -k/sbin/service_%s_stop"
WATCH_DAEMONS=value
A space separated list of monitored daemons. For example:
WATCH_DAEMONS="zebra bgpd ospfd ospf6d ripd ripngd"

D.1.16. /etc/sysconfig/radvd

The /etc/sysconfig/radvd file is used to pass arguments to the radvd daemon at boot time. By default, it contains the following option:
OPTIONS=value
Additional options to be passed to the radvd daemon. For example:
OPTIONS="-u radvd"

D.1.17. /etc/sysconfig/samba

The /etc/sysconfig/samba file is used to pass arguments to the Samba daemons at boot time. By default, it contains the following options:
SMBDOPTIONS=value
Additional options to be passed to smbd. For example:
SMBDOPTIONS="-D"
NMBDOPTIONS=value
Additional options to be passed to nmbd. For example:
NMBDOPTIONS="-D"
WINBINDOPTIONS=value
Additional options to be passed to winbindd. For example:
WINBINDOPTIONS=""
Refer to Sección 16.1, “Samba” for more information on Samba and its configuration.

D.1.18. /etc/sysconfig/selinux

The /etc/sysconfig/selinux file contains the basic configuration options for SELinux. It is a symbolic link to /etc/selinux/config, and by default, it contains the following options:
SELINUX=value
The security policy. The value can be either enforcing (the security policy is always enforced), permissive (instead of enforcing the policy, appropriate warnings are displayed), or disabled (no policy is used). For example:
SELINUX=enforcing
SELINUXTYPE=value
The protection type. The value can be either targeted (the targeted processes are protected), or mls (the Multi Level Security protection). For example:
SELINUXTYPE=targeted

D.1.19. /etc/sysconfig/sendmail

The /etc/sysconfig/sendmail is used to set the default values for the Sendmail application. By default, it contains the following values:
DAEMON=boolean
A boolean to enable (yes) or disable (no) running sendmail as a daemon. For example:
DAEMON=yes
QUEUE=value
The interval at which the messages are to be processed. For example:
QUEUE=1h
Refer to Sección 14.3.2, “Sendmail” for more information on Sendmail and its configuration.

D.1.20. /etc/sysconfig/spamassassin

The /etc/sysconfig/spamassassin file is used to pass arguments to the spamd daemon (a daemonized version of Spamassassin) at boot time. By default, it contains the following option:
SPAMDOPTIONS=value
Additional options to be passed to the spamd daemon. For example:
SPAMDOPTIONS="-d -c -m5 -H"
Refer to Sección 14.4.2.6, “Filtros de correo basura” for more information on Spamassassin and its configuration.

D.1.21. /etc/sysconfig/squid

The /etc/sysconfig/squid file is used to pass arguments to the squid daemon at boot time. By default, it contains the following options:
SQUID_OPTS=value
Additional options to be passed to the squid daemon. For example:
SQUID_OPTS=""
SQUID_SHUTDOWN_TIMEOUT=value
The time to wait for squid daemon to shut down. For example:
SQUID_SHUTDOWN_TIMEOUT=100
SQUID_CONF=value
The default configuration file. For example:
SQUID_CONF="/etc/squid/squid.conf"

D.1.22. /etc/sysconfig/system-config-users

The /etc/sysconfig/system-config-users file is the configuration file for the User Manager utility, and should not be edited by hand. By default, it contains the following options:
FILTER=boolean
A boolean to enable (true) or disable (false) filtering of system users. For example:
FILTER=true
ASSIGN_HIGHEST_UID=boolean
A boolean to enable (true) or disable (false) assigning the highest available UID to newly added users. For example:
ASSIGN_HIGHEST_UID=true
ASSIGN_HIGHEST_GID=boolean
A boolean to enable (true) or disable (false) assigning the highest available GID to newly added groups. For example:
ASSIGN_HIGHEST_GID=true
PREFER_SAME_UID_GID=boolean
A boolean to enable (true) or disable (false) using the same UID and GID for newly added users when possible. For example:
PREFER_SAME_UID_GID=true
Refer to Sección 3.3, “Using the User Manager Tool” for more information on User Manager and its usage.

D.1.23. /etc/sysconfig/vncservers

The /etc/sysconfig/vncservers file configures the way the Virtual Network Computing (VNC) server starts up. By default, it contains the following options:
VNCSERVERS=value
A list of space separated display:username pairs. For example:
VNCSERVERS="2:myusername"
VNCSERVERARGS[display]=value
Additional arguments to be passed to the VNC server running on the specified display. For example:
VNCSERVERARGS[2]="-geometry 800x600 -nolisten tcp -localhost"

D.1.24. /etc/sysconfig/xinetd

The /etc/sysconfig/xinetd file is used to pass arguments to the xinetd daemon at boot time. By default, it contains the following options:
EXTRAOPTIONS=value
Additional options to be passed to xinetd. For example:
EXTRAOPTIONS=""
XINETD_LANG=value
The locale information to be passed to every service started by xinetd. Note that to remove locale information from the xinetd environment, you can use an empty string ("") or none. For example:
XINETD_LANG="en_US"
Refer to Capítulo 8, Services and Daemons for more information on how to configure the xinetd services.

D.2. Directories in the /etc/sysconfig/ Directory

The following directories are normally found in /etc/sysconfig/.
/etc/sysconfig/cbq/
This directory contains the configuration files needed to do Class Based Queuing for bandwidth management on network interfaces. CBQ divides user traffic into a hierarchy of classes based on any combination of IP addresses, protocols, and application types.
/etc/sysconfig/networking/
This directory is used by the Network Administration Tool (system-config-network), and its contents should not be edited manually.
/etc/sysconfig/network-scripts/
This directory contains the following network-related configuration files:
  • Network configuration files for each configured network interface, such as ifcfg-eth0 for the eth0 Ethernet interface.
  • Scripts used to bring network interfaces up and down, such as ifup and ifdown.
  • Scripts used to bring ISDN interfaces up and down, such as ifup-isdn and ifdown-isdn.
  • Various shared network function scripts which should not be edited directly.
For more information on the /etc/sysconfig/network-scripts/ directory, refer to Capítulo 7, Interfaces de red.

D.3. Recursos adicionales

This chapter is only intended as an introduction to the files in the /etc/sysconfig/ directory. The following source contains more comprehensive information.

D.3.1. Documentación instalada

/usr/share/doc/initscripts-version/sysconfig.txt
A more authoritative listing of the files found in the /etc/sysconfig/ directory and the configuration options available for them.

The proc File System

The Linux kernel has two primary functions: to control access to physical devices on the computer and to schedule when and how processes interact with these devices. The /proc/ directory (also called the proc file system) contains a hierarchy of special files which represent the current state of the kernel, allowing applications and users to peer into the kernel's view of the system.
The /proc/ directory contains a wealth of information detailing system hardware and any running processes. In addition, some of the files within /proc/ can be manipulated by users and applications to communicate configuration changes to the kernel.

The /proc/ide/ and /proc/pci/ directories

Later versions of the 2.6 kernel have made the /proc/ide/ and /proc/pci/ directories obsolete. The /proc/ide/ file system is now superseded by files in sysfs; to retrieve information on PCI devices, use lspci instead. For more information on sysfs or lspci, refer to their respective man pages.

E.1. A Virtual File System

Linux systems store all data as files. Most users are familiar with the two primary types of files: text and binary. But the /proc/ directory contains another type of file called a virtual file. As such, /proc/ is often referred to as a virtual file system.
Virtual files have unique qualities. Most of them are listed as zero bytes in size, but can still contain a large amount of information when viewed. In addition, most of the time and date stamps on virtual files reflect the current time and date, indicative of the fact they are constantly updated.
Virtual files such as /proc/interrupts, /proc/meminfo, /proc/mounts, and /proc/partitions provide an up-to-the-moment glimpse of the system's hardware. Others, like the /proc/filesystems file and the /proc/sys/ directory provide system configuration information and interfaces.
For organizational purposes, files containing information on a similar topic are grouped into virtual directories and sub-directories. Process directories contain information about each running process on the system.

E.1.1. Viewing Virtual Files

Most files within /proc/ files operate similarly to text files, storing useful system and hardware data in human-readable text format. As such, you can use cat, more, or less to view them. For example, to display information about the system's CPU, run cat /proc/cpuinfo. This will return output similar to the following:
processor	: 0
vendor_id	: AuthenticAMD
cpu family	: 5
model		: 9
model name	: AMD-K6(tm) 3D+
Processor stepping	: 1 cpu
MHz		: 400.919
cache size	: 256 KB
fdiv_bug	: no
hlt_bug		: no
f00f_bug	: no
coma_bug	: no
fpu		: yes
fpu_exception	: yes
cpuid level	: 1
wp		: yes
flags		: fpu vme de pse tsc msr mce cx8 pge mmx syscall 3dnow k6_mtrr
bogomips	: 799.53
Some files in /proc/ contain information that is not human-readable. To retrieve information from such files, use tools such as lspci, apm, free, and top.

Certain files can only be accessed with root privileges

Some of the virtual files in the /proc/ directory are readable only by the root user.

E.1.2. Changing Virtual Files

As a general rule, most virtual files within the /proc/ directory are read-only. However, some can be used to adjust settings in the kernel. This is especially true for files in the /proc/sys/ subdirectory.
To change the value of a virtual file, use the following command:
echo value > /proc/file
For example, to change the hostname on the fly, run:
echo www.example.com > /proc/sys/kernel/hostname
Other files act as binary or Boolean switches. Typing cat /proc/sys/net/ipv4/ip_forward returns either a 0 (off or false) or a 1 (on or true). A 0 indicates that the kernel is not forwarding network packets. To turn packet forwarding on, run echo 1 > /proc/sys/net/ipv4/ip_forward.

The sysctl command

Another command used to alter settings in the /proc/sys/ subdirectory is /sbin/sysctl. For more information on this command, refer to Sección E.4, “Using the sysctl Command”
For a listing of some of the kernel configuration files available in the /proc/sys/ subdirectory, refer to Sección E.3.9, “ /proc/sys/ ”.

E.2. Top-level Files within the proc File System

Below is a list of some of the more useful virtual files in the top-level of the /proc/ directory.

The content of your files may differ

In most cases, the content of the files listed in this section are not the same as those installed on your machine. This is because much of the information is specific to the hardware on which Fedora is running for this documentation effort.

E.2.1. /proc/buddyinfo

This file is used primarily for diagnosing memory fragmentation issues. Using the buddy algorithm, each column represents the number of pages of a certain order (a certain size) that are available at any given time. For example, for zone direct memory access (DMA), there are 90 of 2(0*PAGE_SIZE) chunks of memory. Similarly, there are 6 of 2(1*PAGE_SIZE) chunks, and 2 of 2(2*PAGE_SIZE) chunks of memory available.
The DMA row references the first 16 MB on a system, the HighMem row references all memory greater than 4 GB on a system, and the Normal row references all memory in between.
The following is an example of the output typical of /proc/buddyinfo:
Node 0, zone      DMA     90      6      2      1      1      ...
Node 0, zone   Normal   1650    310      5      0      0      ...
Node 0, zone  HighMem      2      0      0      1      1      ...

E.2.2. /proc/cmdline

This file shows the parameters passed to the kernel at the time it is started. A sample /proc/cmdline file looks like the following:
ro root=/dev/VolGroup00/LogVol00 rhgb quiet 3
This tells us that the kernel is mounted read-only (signified by (ro)), located on the first logical volume (LogVol00) of the first volume group (/dev/VolGroup00). LogVol00 is the equivalent of a disk partition in a non-LVM system (Logical Volume Management), just as /dev/VolGroup00 is similar in concept to /dev/hda1, but much more extensible.
For more information on LVM used in Fedora, refer to http://www.tldp.org/HOWTO/LVM-HOWTO/index.html.
Next, rhgb signals that the rhgb package has been installed, and graphical booting is supported, assuming /etc/inittab shows a default runlevel set to id:5:initdefault:.
Finally, quiet indicates all verbose kernel messages are suppressed at boot time.

E.2.3. /proc/cpuinfo

This virtual file identifies the type of processor used by your system. The following is an example of the output typical of /proc/cpuinfo:
processor	: 0
vendor_id	: GenuineIntel
cpu family	: 15
model		: 2
model name	: Intel(R) Xeon(TM) CPU 2.40GHz
stepping	: 7 cpu
MHz		: 2392.371
cache size	: 512 KB
physical id	: 0
siblings	: 2
runqueue	: 0
fdiv_bug	: no
hlt_bug		: no
f00f_bug	: no
coma_bug	: no
fpu		: yes
fpu_exception	: yes
cpuid level	: 2
wp		: yes
flags		: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca  cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm
bogomips	: 4771.02
  • processor — Provides each processor with an identifying number. On systems that have one processor, only a 0 is present.
  • cpu family — Authoritatively identifies the type of processor in the system. For an Intel-based system, place the number in front of "86" to determine the value. This is particularly helpful for those attempting to identify the architecture of an older system such as a 586, 486, or 386. Because some RPM packages are compiled for each of these particular architectures, this value also helps users determine which packages to install.
  • model name — Displays the common name of the processor, including its project name.
  • cpu MHz — Shows the precise speed in megahertz for the processor to the thousandths decimal place.
  • cache size — Displays the amount of level 2 memory cache available to the processor.
  • siblings — Displays the number of sibling CPUs on the same physical CPU for architectures which use hyper-threading.
  • flags — Defines a number of different qualities about the processor, such as the presence of a floating point unit (FPU) and the ability to process MMX instructions.

E.2.4. /proc/crypto

This file lists all installed cryptographic ciphers used by the Linux kernel, including additional details for each. A sample /proc/crypto file looks like the following:
name         : sha1
module       : kernel
type         : digest
blocksize    : 64
digestsize   : 20
name         : md5
module       : md5
type         : digest
blocksize    : 64
digestsize   : 16

E.2.5. /proc/devices

This file displays the various character and block devices currently configured (not including devices whose modules are not loaded). Below is a sample output from this file:
Character devices:
  1 mem
  4 /dev/vc/0
  4 tty
  4 ttyS
  5 /dev/tty
  5 /dev/console
  5 /dev/ptmx
  7 vcs
  10 misc
  13 input
  29 fb
  36 netlink
  128 ptm
  136 pts
  180 usb

Block devices:
  1 ramdisk
  3 ide0
  9 md
  22 ide1
  253 device-mapper
  254 mdp
The output from /proc/devices includes the major number and name of the device, and is broken into two major sections: Character devices and Block devices.
Character devices are similar to block devices, except for two basic differences:
  1. Character devices do not require buffering. Block devices have a buffer available, allowing them to order requests before addressing them. This is important for devices designed to store information — such as hard drives — because the ability to order the information before writing it to the device allows it to be placed in a more efficient order.
  2. Character devices send data with no preconfigured size. Block devices can send and receive information in blocks of a size configured per device.
For more information about devices refer to the following installed documentation:
/usr/share/doc/kernel-doc-<kernel_version>/Documentation/devices.txt

E.2.6. /proc/dma

This file contains a list of the registered ISA DMA channels in use. A sample /proc/dma files looks like the following:
4: cascade

E.2.7. /proc/execdomains

This file lists the execution domains currently supported by the Linux kernel, along with the range of personalities they support.
0-0   Linux           [kernel]
Think of execution domains as the "personality" for an operating system. Because other binary formats, such as Solaris, UnixWare, and FreeBSD, can be used with Linux, programmers can change the way the operating system treats system calls from these binaries by changing the personality of the task. Except for the PER_LINUX execution domain, different personalities can be implemented as dynamically loadable modules.

E.2.8. /proc/fb

This file contains a list of frame buffer devices, with the frame buffer device number and the driver that controls it. Typical output of /proc/fb for systems which contain frame buffer devices looks similar to the following:
0 VESA VGA

E.2.9. /proc/filesystems

This file displays a list of the file system types currently supported by the kernel. Sample output from a generic /proc/filesystems file looks similar to the following:
nodev   sysfs
nodev   rootfs
nodev   bdev
nodev   proc
nodev   sockfs
nodev   binfmt_misc
nodev   usbfs
nodev   usbdevfs
nodev   futexfs
nodev   tmpfs
nodev   pipefs
nodev   eventpollfs
nodev   devpts
	ext2
nodev   ramfs
nodev   hugetlbfs
	iso9660
nodev   mqueue
	ext3
nodev   rpc_pipefs
nodev   autofs
The first column signifies whether the file system is mounted on a block device. Those beginning with nodev are not mounted on a device. The second column lists the names of the file systems supported.
The mount command cycles through the file systems listed here when one is not specified as an argument.

E.2.10. /proc/interrupts

This file records the number of interrupts per IRQ on the x86 architecture. A standard /proc/interrupts looks similar to the following:
  CPU0
  0:   80448940          XT-PIC  timer
  1:     174412          XT-PIC  keyboard
  2:          0          XT-PIC  cascade
  8:          1          XT-PIC  rtc
 10:     410964          XT-PIC  eth0
 12:      60330          XT-PIC  PS/2 Mouse
 14:    1314121          XT-PIC  ide0
 15:    5195422          XT-PIC  ide1
NMI:          0
ERR:          0
For a multi-processor machine, this file may look slightly different:
	   CPU0       CPU1
  0: 1366814704          0          XT-PIC  timer
  1:        128        340    IO-APIC-edge  keyboard
  2:          0          0          XT-PIC  cascade
  8:          0          1    IO-APIC-edge  rtc
 12:       5323       5793    IO-APIC-edge  PS/2 Mouse
 13:          1          0          XT-PIC  fpu
 16:   11184294   15940594   IO-APIC-level  Intel EtherExpress Pro 10/100 Ethernet
 20:    8450043   11120093   IO-APIC-level  megaraid
 30:      10432      10722   IO-APIC-level  aic7xxx
 31:         23         22   IO-APIC-level  aic7xxx
NMI:          0
ERR:          0
The first column refers to the IRQ number. Each CPU in the system has its own column and its own number of interrupts per IRQ. The next column reports the type of interrupt, and the last column contains the name of the device that is located at that IRQ.
Each of the types of interrupts seen in this file, which are architecture-specific, mean something different. For x86 machines, the following values are common:
  • XT-PIC — This is the old AT computer interrupts.
  • IO-APIC-edge — The voltage signal on this interrupt transitions from low to high, creating an edge, where the interrupt occurs and is only signaled once. This kind of interrupt, as well as the IO-APIC-level interrupt, are only seen on systems with processors from the 586 family and higher.
  • IO-APIC-level — Generates interrupts when its voltage signal is high until the signal is low again.

E.2.11. /proc/iomem

This file shows you the current map of the system's memory for each physical device:
00000000-0009fbff : System RAM
0009fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-07ffffff : System RAM
00100000-00291ba8 : Kernel code
00291ba9-002e09cb : Kernel data
e0000000-e3ffffff : VIA Technologies, Inc. VT82C597 [Apollo VP3] e4000000-e7ffffff : PCI Bus #01
e4000000-e4003fff : Matrox Graphics, Inc. MGA G200 AGP
e5000000-e57fffff : Matrox Graphics, Inc. MGA G200 AGP
e8000000-e8ffffff : PCI Bus #01
e8000000-e8ffffff : Matrox Graphics, Inc. MGA G200 AGP
ea000000-ea00007f : Digital Equipment Corporation DECchip 21140 [FasterNet]
ea000000-ea00007f : tulip ffff0000-ffffffff : reserved
The first column displays the memory registers used by each of the different types of memory. The second column lists the kind of memory located within those registers and displays which memory registers are used by the kernel within the system RAM or, if the network interface card has multiple Ethernet ports, the memory registers assigned for each port.

E.2.12. /proc/ioports

The output of /proc/ioports provides a list of currently registered port regions used for input or output communication with a device. This file can be quite long. The following is a partial listing:
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
02f8-02ff : serial(auto)
0376-0376 : ide1
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
d000-dfff : PCI Bus #01
e000-e00f : VIA Technologies, Inc. Bus Master IDE
e000-e007 : ide0
e008-e00f : ide1
e800-e87f : Digital Equipment Corporation DECchip 21140 [FasterNet]
e800-e87f : tulip
The first column gives the I/O port address range reserved for the device listed in the second column.

E.2.13. /proc/kcore

This file represents the physical memory of the system and is stored in the core file format. Unlike most /proc/ files, kcore displays a size. This value is given in bytes and is equal to the size of the physical memory (RAM) used plus 4 KB.
The contents of this file are designed to be examined by a debugger, such as gdb, and is not human readable.

Do not attempt to view the content of /proc/kcore

Do not view the /proc/kcore virtual file. The contents of the file scramble text output on the terminal. If this file is accidentally viewed, press Ctrl+C to stop the process and then type reset to bring back the command line prompt.

E.2.14. /proc/kmsg

This file is used to hold messages generated by the kernel. These messages are then picked up by other programs, such as /sbin/klogd or /bin/dmesg.

E.2.15. /proc/loadavg

This file provides a look at the load average in regard to both the CPU and IO over time, as well as additional data used by uptime and other commands. A sample /proc/loadavg file looks similar to the following:
0.20 0.18 0.12 1/80 11206
The first three columns measure CPU and IO utilization of the last one, five, and 15 minute periods. The fourth column shows the number of currently running processes and the total number of processes. The last column displays the last process ID used.
In addition, load average also refers to the number of processes ready to run (i.e. in the run queue, waiting for a CPU share.

E.2.16. /proc/locks

This file displays the files currently locked by the kernel. The contents of this file contain internal kernel debugging data and can vary tremendously, depending on the use of the system. A sample /proc/locks file for a lightly loaded system looks similar to the following:
1: POSIX  ADVISORY  WRITE 3568 fd:00:2531452 0 EOF
2: FLOCK  ADVISORY  WRITE 3517 fd:00:2531448 0 EOF
3: POSIX  ADVISORY  WRITE 3452 fd:00:2531442 0 EOF
4: POSIX  ADVISORY  WRITE 3443 fd:00:2531440 0 EOF
5: POSIX  ADVISORY  WRITE 3326 fd:00:2531430 0 EOF
6: POSIX  ADVISORY  WRITE 3175 fd:00:2531425 0 EOF
7: POSIX  ADVISORY  WRITE 3056 fd:00:2548663 0 EOF
Each lock has its own line which starts with a unique number. The second column refers to the class of lock used, with FLOCK signifying the older-style UNIX file locks from a flock system call and POSIX representing the newer POSIX locks from the lockf system call.
The third column can have two values: ADVISORY or MANDATORY. ADVISORY means that the lock does not prevent other people from accessing the data; it only prevents other attempts to lock it. MANDATORY means that no other access to the data is permitted while the lock is held. The fourth column reveals whether the lock is allowing the holder READ or WRITE access to the file. The fifth column shows the ID of the process holding the lock. The sixth column shows the ID of the file being locked, in the format of MAJOR-DEVICE:MINOR-DEVICE:INODE-NUMBER . The seventh and eighth column shows the start and end of the file's locked region.

E.2.17. /proc/mdstat

This file contains the current information for multiple-disk, RAID configurations. If the system does not contain such a configuration, then /proc/mdstat looks similar to the following:
Personalities :  read_ahead not set unused devices: <none>
This file remains in the same state as seen above unless a software RAID or md device is present. In that case, view /proc/mdstat to find the current status of mdX RAID devices.
The /proc/mdstat file below shows a system with its md0 configured as a RAID 1 device, while it is currently re-syncing the disks:
Personalities : [linear] [raid1] read_ahead 1024 sectors
md0: active raid1 sda2[1] sdb2[0] 9940 blocks [2/2] [UU] resync=1% finish=12.3min algorithm 2 [3/3] [UUU]
unused devices: <none>

E.2.18. /proc/meminfo

This is one of the more commonly used files in the /proc/ directory, as it reports a large amount of valuable information about the systems RAM usage.
The following sample /proc/meminfo virtual file is from a system with 256 MB of RAM and 512 MB of swap space:
MemTotal:       255908 kB
MemFree:         69936 kB
Buffers:         15812 kB
Cached:         115124 kB
SwapCached:          0 kB
Active:          92700 kB
Inactive:        63792 kB
HighTotal:           0 kB
HighFree:            0 kB
LowTotal:       255908 kB
LowFree:         69936 kB
SwapTotal:      524280 kB
SwapFree:       524280 kB
Dirty:               4 kB
Writeback:           0 kB
Mapped:          42236 kB
Slab:            25912 kB
Committed_AS:   118680 kB
PageTables:       1236 kB
VmallocTotal:  3874808 kB
VmallocUsed:      1416 kB
VmallocChunk:  3872908 kB
HugePages_Total:     0
HugePages_Free:      0
Hugepagesize:     4096 kB
Much of the information here is used by the free, top, and ps commands. In fact, the output of the free command is similar in appearance to the contents and structure of /proc/meminfo. But by looking directly at /proc/meminfo, more details are revealed:
  • MemTotal — Total amount of physical RAM, in kilobytes.
  • MemFree — The amount of physical RAM, in kilobytes, left unused by the system.
  • Buffers — The amount of physical RAM, in kilobytes, used for file buffers.
  • Cached — The amount of physical RAM, in kilobytes, used as cache memory.
  • SwapCached — The amount of swap, in kilobytes, used as cache memory.
  • Active — The total amount of buffer or page cache memory, in kilobytes, that is in active use. This is memory that has been recently used and is usually not reclaimed for other purposes.
  • Inactive — The total amount of buffer or page cache memory, in kilobytes, that are free and available. This is memory that has not been recently used and can be reclaimed for other purposes.
  • HighTotal and HighFree — The total and free amount of memory, in kilobytes, that is not directly mapped into kernel space. The HighTotal value can vary based on the type of kernel used.
  • LowTotal and LowFree — The total and free amount of memory, in kilobytes, that is directly mapped into kernel space. The LowTotal value can vary based on the type of kernel used.
  • SwapTotal — The total amount of swap available, in kilobytes.
  • SwapFree — The total amount of swap free, in kilobytes.
  • Dirty — The total amount of memory, in kilobytes, waiting to be written back to the disk.
  • Writeback — The total amount of memory, in kilobytes, actively being written back to the disk.
  • Mapped — The total amount of memory, in kilobytes, which have been used to map devices, files, or libraries using the mmap command.
  • Slab — The total amount of memory, in kilobytes, used by the kernel to cache data structures for its own use.
  • Committed_AS — The total amount of memory, in kilobytes, estimated to complete the workload. This value represents the worst case scenario value, and also includes swap memory.
  • PageTables — The total amount of memory, in kilobytes, dedicated to the lowest page table level.
  • VMallocTotal — The total amount of memory, in kilobytes, of total allocated virtual address space.
  • VMallocUsed — The total amount of memory, in kilobytes, of used virtual address space.
  • VMallocChunk — The largest contiguous block of memory, in kilobytes, of available virtual address space.
  • HugePages_Total — The total number of hugepages for the system. The number is derived by dividing Hugepagesize by the megabytes set aside for hugepages specified in /proc/sys/vm/hugetlb_pool. This statistic only appears on the x86, Itanium, and AMD64 architectures.
  • HugePages_Free — The total number of hugepages available for the system. This statistic only appears on the x86, Itanium, and AMD64 architectures.
  • Hugepagesize — The size for each hugepages unit in kilobytes. By default, the value is 4096 KB on uniprocessor kernels for 32 bit architectures. For SMP, hugemem kernels, and AMD64, the default is 2048 KB. For Itanium architectures, the default is 262144 KB. This statistic only appears on the x86, Itanium, and AMD64 architectures.

E.2.19. /proc/misc

This file lists miscellaneous drivers registered on the miscellaneous major device, which is device number 10:
63 device-mapper 175 agpgart 135 rtc 134 apm_bios
The first column is the minor number of each device, while the second column shows the driver in use.

E.2.20. /proc/modules

This file displays a list of all modules loaded into the kernel. Its contents vary based on the configuration and use of your system, but it should be organized in a similar manner to this sample /proc/modules file output:

The content of /proc/modules

This example has been reformatted into a readable format. Most of this information can also be viewed via the /sbin/lsmod command.
nfs      170109  0 -          Live 0x129b0000
lockd    51593   1 nfs,       Live 0x128b0000
nls_utf8 1729    0 -          Live 0x12830000
vfat     12097   0 -          Live 0x12823000
fat      38881   1 vfat,      Live 0x1287b000
autofs4  20293   2 -          Live 0x1284f000
sunrpc   140453  3 nfs,lockd, Live 0x12954000
3c59x    33257   0 -          Live 0x12871000
uhci_hcd 28377   0 -          Live 0x12869000
md5      3777    1 -          Live 0x1282c000
ipv6     211845 16 -          Live 0x128de000
ext3     92585   2 -          Live 0x12886000
jbd      65625   1 ext3,      Live 0x12857000
dm_mod   46677   3 -          Live 0x12833000
The first column contains the name of the module.
The second column refers to the memory size of the module, in bytes.
The third column lists how many instances of the module are currently loaded. A value of zero represents an unloaded module.
The fourth column states if the module depends upon another module to be present in order to function, and lists those other modules.
The fifth column lists what load state the module is in: Live, Loading, or Unloading are the only possible values.
The sixth column lists the current kernel memory offset for the loaded module. This information can be useful for debugging purposes, or for profiling tools such as oprofile.

E.2.21. /proc/mounts

This file provides a list of all mounts in use by the system:
rootfs / rootfs rw 0 0
/proc /proc proc rw,nodiratime 0 0 none
/dev ramfs rw 0 0
/dev/mapper/VolGroup00-LogVol00 / ext3 rw 0 0
none /dev ramfs rw 0 0
/proc /proc proc rw,nodiratime 0 0
/sys /sys sysfs rw 0 0
none /dev/pts devpts rw 0 0
usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hda1 /boot ext3 rw 0 0
none /dev/shm tmpfs rw 0 0
none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0
sunrpc /var/lib/nfs/rpc_pipefs rpc_pipefs rw 0 0
The output found here is similar to the contents of /etc/mtab, except that /proc/mounts is more up-to-date.
The first column specifies the device that is mounted, the second column reveals the mount point, and the third column tells the file system type, and the fourth column tells you if it is mounted read-only (ro) or read-write (rw). The fifth and sixth columns are dummy values designed to match the format used in /etc/mtab.

E.2.22. /proc/mtrr

This file refers to the current Memory Type Range Registers (MTRRs) in use with the system. If the system architecture supports MTRRs, then the /proc/mtrr file may look similar to the following:
reg00: base=0x00000000 (   0MB), size= 256MB: write-back, count=1
reg01: base=0xe8000000 (3712MB), size=  32MB: write-combining, count=1
MTRRs are used with the Intel P6 family of processors (Pentium II and higher) and control processor access to memory ranges. When using a video card on a PCI or AGP bus, a properly configured /proc/mtrr file can increase performance more than 150%.
Most of the time, this value is properly configured by default. More information on manually configuring this file can be found locally at the following location:
/usr/share/doc/kernel-doc-<kernel_version>/Documentation/<arch>/mtrr.txt

E.2.23. /proc/partitions

This file contains partition block allocation information. A sampling of this file from a basic system looks similar to the following:
major minor  #blocks  name
  3     0   19531250 hda
  3     1     104391 hda1
  3     2   19422585 hda2
253     0   22708224 dm-0
253     1     524288 dm-1
Most of the information here is of little importance to the user, except for the following columns:
  • major — The major number of the device with this partition. The major number in the /proc/partitions, (3), corresponds with the block device ide0, in /proc/devices.
  • minor — The minor number of the device with this partition. This serves to separate the partitions into different physical devices and relates to the number at the end of the name of the partition.
  • #blocks — Lists the number of physical disk blocks contained in a particular partition.
  • name — The name of the partition.

E.2.24. /proc/slabinfo

This file gives full information about memory usage on the slab level. Linux kernels greater than version 2.2 use slab pools to manage memory above the page level. Commonly used objects have their own slab pools.
Instead of parsing the highly verbose /proc/slabinfo file manually, the /usr/bin/slabtop program displays kernel slab cache information in real time. This program allows for custom configurations, including column sorting and screen refreshing.
A sample screen shot of /usr/bin/slabtop usually looks like the following example:
Active / Total Objects (% used)    : 133629 / 147300 (90.7%)
Active / Total Slabs (% used)      : 11492 / 11493 (100.0%)
Active / Total Caches (% used)     : 77 / 121 (63.6%)
Active / Total Size (% used)       : 41739.83K / 44081.89K (94.7%)
Minimum / Average / Maximum Object : 0.01K / 0.30K / 128.00K
OBJS   ACTIVE USE      OBJ   SIZE     SLABS OBJ/SLAB CACHE SIZE NAME
44814  43159  96%    0.62K   7469      6     29876K ext3_inode_cache
36900  34614  93%    0.05K    492     75      1968K buffer_head
35213  33124  94%    0.16K   1531     23      6124K dentry_cache
7364   6463  87%    0.27K    526      14      2104K radix_tree_node
2585   1781  68%    0.08K     55      47       220K vm_area_struct
2263   2116  93%    0.12K     73      31       292K size-128
1904   1125  59%    0.03K     16      119        64K size-32
1666    768  46%    0.03K     14      119        56K anon_vma
1512   1482  98%    0.44K    168       9       672K inode_cache
1464   1040  71%    0.06K     24      61        96K size-64
1320    820  62%    0.19K     66      20       264K filp
678    587  86%    0.02K      3      226        12K dm_io
678    587  86%    0.02K      3      226        12K dm_tio
576    574  99%    0.47K     72        8       288K proc_inode_cache
528    514  97%    0.50K     66        8       264K size-512
492    372  75%    0.09K     12       41        48K bio
465    314  67%    0.25K     31       15       124K size-256
452    331  73%    0.02K      2      226         8K biovec-1
420    420 100%    0.19K     21       20        84K skbuff_head_cache
305    256  83%    0.06K      5       61        20K biovec-4
290      4   1%    0.01K      1      290         4K revoke_table
264    264 100%    4.00K    264        1      1056K size-4096
260    256  98%    0.19K     13       20        52K biovec-16
260    256  98%    0.75K     52        5       208K biovec-64
Some of the more commonly used statistics in /proc/slabinfo that are included into /usr/bin/slabtop include:
  • OBJS — The total number of objects (memory blocks), including those in use (allocated), and some spares not in use.
  • ACTIVE — The number of objects (memory blocks) that are in use (allocated).
  • USE — Percentage of total objects that are active. ((ACTIVE/OBJS)(100))
  • OBJ SIZE — The size of the objects.
  • SLABS — The total number of slabs.
  • OBJ/SLAB — The number of objects that fit into a slab.
  • CACHE SIZE — The cache size of the slab.
  • NAME — The name of the slab.
For more information on the /usr/bin/slabtop program, refer to the slabtop man page.

E.2.25. /proc/stat

This file keeps track of a variety of different statistics about the system since it was last restarted. The contents of /proc/stat, which can be quite long, usually begins like the following example:
cpu  259246 7001 60190 34250993 137517 772 0
cpu0 259246 7001 60190 34250993 137517 772 0
intr 354133732 347209999 2272 0 4 4 0 0 3 1 1249247 0 0 80143 0 422626 5169433
ctxt 12547729
btime 1093631447
processes 130523
procs_running 1
procs_blocked 0
preempt 5651840
cpu  209841 1554 21720 118519346 72939 154 27168
cpu0 42536 798 4841 14790880 14778 124 3117
cpu1 24184 569 3875 14794524 30209 29 3130
cpu2 28616 11 2182 14818198 4020 1 3493
cpu3 35350 6 2942 14811519 3045 0 3659
cpu4 18209 135 2263 14820076 12465 0 3373
cpu5 20795 35 1866 14825701 4508 0 3615
cpu6 21607 0 2201 14827053 2325 0 3334
cpu7 18544 0 1550 14831395 1589 0 3447
intr 15239682 14857833 6 0 6 6 0 5 0 1 0 0 0 29 0 2 0 0 0 0 0 0 0 94982 0 286812
ctxt 4209609
btime 1078711415
processes 21905
procs_running 1
procs_blocked 0
Some of the more commonly used statistics include:
  • cpu — Measures the number of jiffies (1/100 of a second for x86 systems) that the system has been in user mode, user mode with low priority (nice), system mode, idle task, I/O wait, IRQ (hardirq), and softirq respectively. The IRQ (hardirq) is the direct response to a hardware event. The IRQ takes minimal work for queuing the "heavy" work up for the softirq to execute. The softirq runs at a lower priority than the IRQ and therefore may be interrupted more frequently. The total for all CPUs is given at the top, while each individual CPU is listed below with its own statistics. The following example is a 4-way Intel Pentium Xeon configuration with multi-threading enabled, therefore showing four physical processors and four virtual processors totaling eight processors.
  • page — The number of memory pages the system has written in and out to disk.
  • swap — The number of swap pages the system has brought in and out.
  • intr — The number of interrupts the system has experienced.
  • btime — The boot time, measured in the number of seconds since January 1, 1970, otherwise known as the epoch.

E.2.26. /proc/swaps

This file measures swap space and its utilization. For a system with only one swap partition, the output of /proc/swaps may look similar to the following:
Filename                          Type        Size     Used    Priority
/dev/mapper/VolGroup00-LogVol01   partition   524280   0       -1
While some of this information can be found in other files in the /proc/ directory, /proc/swap provides a snapshot of every swap file name, the type of swap space, the total size, and the amount of space in use (in kilobytes). The priority column is useful when multiple swap files are in use. The lower the priority, the more likely the swap file is to be used.

E.2.27. /proc/sysrq-trigger

Using the echo command to write to this file, a remote root user can execute most System Request Key commands remotely as if at the local terminal. To echo values to this file, the /proc/sys/kernel/sysrq must be set to a value other than 0. For more information about the System Request Key, refer to Sección E.3.9.3, “ /proc/sys/kernel/ ”.
Although it is possible to write to this file, it cannot be read, even by the root user.

E.2.28. /proc/uptime

This file contains information detailing how long the system has been on since its last restart. The output of /proc/uptime is quite minimal:
350735.47 234388.90
The first number is the total number of seconds the system has been up. The second number is how much of that time the machine has spent idle, in seconds.

E.2.29. /proc/version

This file specifies the version of the Linux kernel, the version of gcc used to compile the kernel, and the time of kernel compilation. It also contains the kernel compiler's user name (in parentheses).
Linux version 2.6.8-1.523 (user@foo.redhat.com) (gcc version 3.4.1 20040714 \  (Red Hat Enterprise Linux 3.4.1-7)) #1 Mon Aug 16 13:27:03 EDT 2004
This information is used for a variety of purposes, including the version data presented when a user logs in.

E.3. Directories within /proc/

Common groups of information concerning the kernel are grouped into directories and subdirectories within the /proc/ directory.

E.3.1. Process Directories

Every /proc/ directory contains a number of directories with numerical names. A listing of them may be similar to the following:
dr-xr-xr-x    3 root     root            0 Feb 13 01:28 1
dr-xr-xr-x    3 root     root            0 Feb 13 01:28 1010
dr-xr-xr-x    3 xfs      xfs             0 Feb 13 01:28 1087
dr-xr-xr-x    3 daemon   daemon          0 Feb 13 01:28 1123
dr-xr-xr-x    3 root     root            0 Feb 13 01:28 11307
dr-xr-xr-x    3 apache   apache          0 Feb 13 01:28 13660
dr-xr-xr-x    3 rpc      rpc             0 Feb 13 01:28 637
dr-xr-xr-x    3 rpcuser  rpcuser         0 Feb 13 01:28 666
These directories are called process directories, as they are named after a program's process ID and contain information specific to that process. The owner and group of each process directory is set to the user running the process. When the process is terminated, its /proc/ process directory vanishes.
Each process directory contains the following files:
  • cmdline — Contains the command issued when starting the process.
  • cwd — A symbolic link to the current working directory for the process.
  • environ — A list of the environment variables for the process. The environment variable is given in all upper-case characters, and the value is in lower-case characters.
  • exe — A symbolic link to the executable of this process.
  • fd — A directory containing all of the file descriptors for a particular process. These are given in numbered links:
    total 0
    lrwx------    1 root     root           64 May  8 11:31 0 -> /dev/null
    lrwx------    1 root     root           64 May  8 11:31 1 -> /dev/null
    lrwx------    1 root     root           64 May  8 11:31 2 -> /dev/null
    lrwx------    1 root     root           64 May  8 11:31 3 -> /dev/ptmx
    lrwx------    1 root     root           64 May  8 11:31 4 -> socket:[7774817]
    lrwx------    1 root     root           64 May  8 11:31 5 -> /dev/ptmx
    lrwx------    1 root     root           64 May  8 11:31 6 -> socket:[7774829]
    lrwx------    1 root     root           64 May  8 11:31 7 -> /dev/ptmx
    
  • maps — A list of memory maps to the various executables and library files associated with this process. This file can be rather long, depending upon the complexity of the process, but sample output from the sshd process begins like the following:
    08048000-08086000 r-xp 00000000 03:03 391479     /usr/sbin/sshd
    08086000-08088000 rw-p 0003e000 03:03 391479	/usr/sbin/sshd
    08088000-08095000 rwxp 00000000 00:00 0
    40000000-40013000 r-xp 0000000 03:03 293205	/lib/ld-2.2.5.so
    40013000-40014000 rw-p 00013000 03:03 293205	/lib/ld-2.2.5.so
    40031000-40038000 r-xp 00000000 03:03 293282	/lib/libpam.so.0.75
    40038000-40039000 rw-p 00006000 03:03 293282	/lib/libpam.so.0.75
    40039000-4003a000 rw-p 00000000 00:00 0
    4003a000-4003c000 r-xp 00000000 03:03 293218	/lib/libdl-2.2.5.so
    4003c000-4003d000 rw-p 00001000 03:03 293218	/lib/libdl-2.2.5.so
    
  • mem — The memory held by the process. This file cannot be read by the user.
  • root — A link to the root directory of the process.
  • stat — The status of the process.
  • statm — The status of the memory in use by the process. Below is a sample /proc/statm file:
    263 210 210 5 0 205 0
    
    The seven columns relate to different memory statistics for the process. From left to right, they report the following aspects of the memory used:
    1. Total program size, in kilobytes.
    2. Size of memory portions, in kilobytes.
    3. Number of pages that are shared.
    4. Number of pages that are code.
    5. Number of pages of data/stack.
    6. Number of library pages.
    7. Number of dirty pages.
  • status — The status of the process in a more readable form than stat or statm. Sample output for sshd looks similar to the following:
    Name:	sshd
    State:	S (sleeping)
    Tgid:	797
    Pid:	797
    PPid:	1
    TracerPid:	0
    Uid:	0	0	0	0
    Gid:	0	0	0	0
    FDSize:	32
    Groups:
    VmSize:	    3072 kB
    VmLck:	       0 kB
    VmRSS:	     840 kB
    VmData:	     104 kB
    VmStk:	      12 kB
    VmExe:	     300 kB
    VmLib:	    2528 kB
    SigPnd:	0000000000000000
    SigBlk:	0000000000000000
    SigIgn:	8000000000001000
    SigCgt:	0000000000014005
    CapInh:	0000000000000000
    CapPrm:	00000000fffffeff
    CapEff:	00000000fffffeff
    
    The information in this output includes the process name and ID, the state (such as S (sleeping) or R (running)), user/group ID running the process, and detailed data regarding memory usage.

E.3.1.1. /proc/self/

The /proc/self/ directory is a link to the currently running process. This allows a process to look at itself without having to know its process ID.
Within a shell environment, a listing of the /proc/self/ directory produces the same contents as listing the process directory for that process.

E.3.2. /proc/bus/

This directory contains information specific to the various buses available on the system. For example, on a standard system containing PCI and USB buses, current data on each of these buses is available within a subdirectory within /proc/bus/ by the same name, such as /proc/bus/pci/.
The subdirectories and files available within /proc/bus/ vary depending on the devices connected to the system. However, each bus type has at least one directory. Within these bus directories are normally at least one subdirectory with a numerical name, such as 001, which contain binary files.
For example, the /proc/bus/usb/ subdirectory contains files that track the various devices on any USB buses, as well as the drivers required for them. The following is a sample listing of a /proc/bus/usb/ directory:
total 0 dr-xr-xr-x    1 root     root            0 May  3 16:25 001
-r--r--r--    1 root     root            0 May  3 16:25 devices
-r--r--r--    1 root     root            0 May  3 16:25 drivers
The /proc/bus/usb/001/ directory contains all devices on the first USB bus and the devices file identifies the USB root hub on the motherboard.
The following is a example of a /proc/bus/usb/devices file:
T:  Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=12  MxCh= 2
B:  Alloc=  0/900 us ( 0%), #Int=  0, #Iso=  0
D:  Ver= 1.00 Cls=09(hub  ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1
P:  Vendor=0000 ProdID=0000 Rev= 0.00
S:  Product=USB UHCI Root Hub
S:  SerialNumber=d400
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr=  0mA
I:  If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub
E:  Ad=81(I) Atr=03(Int.) MxPS=   8 Ivl=255ms

E.3.3. /proc/bus/pci

Later versions of the 2.6 Linux kernel have obsoleted the /proc/pci directory in favor of the /proc/bus/pci directory. Although you can get a list of all PCI devices present on the system using the command cat /proc/bus/pci/devices, the output is difficult to read and interpret.
For a human-readable list of PCI devices, run the following command:
~]# /sbin/lspci -vb
00:00.0 Host bridge: Intel Corporation 82X38/X48 Express DRAM Controller
        Subsystem: Hewlett-Packard Company Device 1308
        Flags: bus master, fast devsel, latency 0
        Capabilities: [e0] Vendor Specific Information <?>
        Kernel driver in use: x38_edac
        Kernel modules: x38_edac

00:01.0 PCI bridge: Intel Corporation 82X38/X48 Express Host-Primary PCI Express Bridge (prog-if 00 [Normal decode])
        Flags: bus master, fast devsel, latency 0
        Bus: primary=00, secondary=01, subordinate=01, sec-latency=0
        I/O behind bridge: 00001000-00001fff
        Memory behind bridge: f0000000-f2ffffff
        Capabilities: [88] Subsystem: Hewlett-Packard Company Device 1308
        Capabilities: [80] Power Management version 3
        Capabilities: [90] MSI: Enable+ Count=1/1 Maskable- 64bit-
        Capabilities: [a0] Express Root Port (Slot+), MSI 00
        Capabilities: [100] Virtual Channel <?>
        Capabilities: [140] Root Complex Link <?>
        Kernel driver in use: pcieport
        Kernel modules: shpchp

00:1a.0 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4 (rev 02) (prog-if 00 [UHCI])
        Subsystem: Hewlett-Packard Company Device 1308
        Flags: bus master, medium devsel, latency 0, IRQ 5
        I/O ports at 2100
        Capabilities: [50] PCI Advanced Features
        Kernel driver in use: uhci_hcd
[output truncated]
The output is a sorted list of all IRQ numbers and addresses as seen by the cards on the PCI bus instead of as seen by the kernel. Beyond providing the name and version of the device, this list also gives detailed IRQ information so an administrator can quickly look for conflicts.

E.3.4. /proc/driver/

This directory contains information for specific drivers in use by the kernel.
A common file found here is rtc which provides output from the driver for the system's Real Time Clock (RTC), the device that keeps the time while the system is switched off. Sample output from /proc/driver/rtc looks like the following:
rtc_time        : 16:21:00
rtc_date        : 2004-08-31
rtc_epoch       : 1900
alarm           : 21:16:27
DST_enable      : no
BCD             : yes
24hr            : yes
square_wave     : no
alarm_IRQ       : no
update_IRQ      : no
periodic_IRQ    : no
periodic_freq   : 1024
batt_status     : okay
For more information about the RTC, refer to the following installed documentation:
/usr/share/doc/kernel-doc-<kernel_version>/Documentation/rtc.txt.

E.3.5. /proc/fs

This directory shows which file systems are exported. If running an NFS server, typing cat /proc/fs/nfsd/exports displays the file systems being shared and the permissions granted for those file systems. For more on file system sharing with NFS, refer to the Network File System (NFS) chapter of the Storage Administration Guide.

E.3.6. /proc/irq/

This directory is used to set IRQ to CPU affinity, which allows the system to connect a particular IRQ to only one CPU. Alternatively, it can exclude a CPU from handling any IRQs.
Each IRQ has its own directory, allowing for the individual configuration of each IRQ. The /proc/irq/prof_cpu_mask file is a bitmask that contains the default values for the smp_affinity file in the IRQ directory. The values in smp_affinity specify which CPUs handle that particular IRQ.
For more information about the /proc/irq/ directory, refer to the following installed documentation:
/usr/share/doc/kernel-doc-kernel_version/Documentation/filesystems/proc.txt

E.3.7. /proc/net/

This directory provides a comprehensive look at various networking parameters and statistics. Each directory and virtual file within this directory describes aspects of the system's network configuration. Below is a partial list of the /proc/net/ directory:
  • arp — Lists the kernel's ARP table. This file is particularly useful for connecting a hardware address to an IP address on a system.
  • atm/ directory — The files within this directory contain Asynchronous Transfer Mode (ATM) settings and statistics. This directory is primarily used with ATM networking and ADSL cards.
  • dev — Lists the various network devices configured on the system, complete with transmit and receive statistics. This file displays the number of bytes each interface has sent and received, the number of packets inbound and outbound, the number of errors seen, the number of packets dropped, and more.
  • dev_mcast — Lists Layer2 multicast groups on which each device is listening.
  • igmp — Lists the IP multicast addresses which this system joined.
  • ip_conntrack — Lists tracked network connections for machines that are forwarding IP connections.
  • ip_tables_names — Lists the types of iptables in use. This file is only present if iptables is active on the system and contains one or more of the following values: filter, mangle, or nat.
  • ip_mr_cache — Lists the multicast routing cache.
  • ip_mr_vif — Lists multicast virtual interfaces.
  • netstat — Contains a broad yet detailed collection of networking statistics, including TCP timeouts, SYN cookies sent and received, and much more.
  • psched — Lists global packet scheduler parameters.
  • raw — Lists raw device statistics.
  • route — Lists the kernel's routing table.
  • rt_cache — Contains the current routing cache.
  • snmp — List of Simple Network Management Protocol (SNMP) data for various networking protocols in use.
  • sockstat — Provides socket statistics.
  • tcp — Contains detailed TCP socket information.
  • tr_rif — Lists the token ring RIF routing table.
  • udp — Contains detailed UDP socket information.
  • unix — Lists UNIX domain sockets currently in use.
  • wireless — Lists wireless interface data.

E.3.8. /proc/scsi/

The primary file in this directory is /proc/scsi/scsi, which contains a list of every recognized SCSI device. From this listing, the type of device, as well as the model name, vendor, SCSI channel and ID data is available.
For example, if a system contains a SCSI CD-ROM, a tape drive, a hard drive, and a RAID controller, this file looks similar to the following:
Attached devices:
Host: scsi1
Channel: 00
Id: 05
Lun: 00
Vendor: NEC
Model: CD-ROM DRIVE:466
Rev: 1.06
Type:   CD-ROM
ANSI SCSI revision: 02
Host: scsi1
Channel: 00
Id: 06
Lun: 00
Vendor: ARCHIVE
Model: Python 04106-XXX
Rev: 7350
Type:   Sequential-Access
ANSI SCSI revision: 02
Host: scsi2
Channel: 00
Id: 06
Lun: 00
Vendor: DELL
Model: 1x6 U2W SCSI BP
Rev: 5.35
Type:   Processor
ANSI SCSI revision: 02
Host: scsi2
Channel: 02
Id: 00
Lun: 00
Vendor: MegaRAID
Model: LD0 RAID5 34556R
Rev: 1.01
Type:   Direct-Access
ANSI SCSI revision: 02
Each SCSI driver used by the system has its own directory within /proc/scsi/, which contains files specific to each SCSI controller using that driver. From the previous example, aic7xxx/ and megaraid/ directories are present, since two drivers are in use. The files in each of the directories typically contain an I/O address range, IRQ information, and statistics for the SCSI controller using that driver. Each controller can report a different type and amount of information. The Adaptec AIC-7880 Ultra SCSI host adapter's file in this example system produces the following output:
Adaptec AIC7xxx driver version: 5.1.20/3.2.4
Compile Options:
TCQ Enabled By Default : Disabled
AIC7XXX_PROC_STATS     : Enabled
AIC7XXX_RESET_DELAY    : 5
Adapter Configuration:
SCSI Adapter: Adaptec AIC-7880 Ultra SCSI host adapter
Ultra Narrow Controller     PCI MMAPed
I/O Base: 0xfcffe000
Adapter SEEPROM Config: SEEPROM found and used.
Adaptec SCSI BIOS: Enabled
IRQ: 30
SCBs: Active 0, Max Active 1, Allocated 15, HW 16, Page 255
Interrupts: 33726
BIOS Control Word: 0x18a6
Adapter Control Word: 0x1c5f
Extended Translation: Enabled
Disconnect Enable Flags: 0x00ff
Ultra Enable Flags: 0x0020
Tag Queue Enable Flags: 0x0000
Ordered Queue Tag Flags: 0x0000
Default Tag Queue Depth: 8
Tagged Queue By Device array for aic7xxx
host instance 1:       {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
Actual queue depth per device for aic7xxx host instance 1:       {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
Statistics:

(scsi1:0:5:0) Device using Narrow/Sync transfers at 20.0 MByte/sec, offset 15
Transinfo settings: current(12/15/0/0), goal(12/15/0/0), user(12/15/0/0)
Total transfers 0 (0 reads and 0 writes)
		< 2K      2K+     4K+     8K+    16K+    32K+    64K+   128K+
Reads:        0       0       0       0       0       0       0       0
Writes:       0       0       0       0       0       0       0       0

(scsi1:0:6:0) Device using Narrow/Sync transfers at 10.0 MByte/sec, offset 15
Transinfo settings: current(25/15/0/0), goal(12/15/0/0), user(12/15/0/0)
Total transfers 132 (0 reads and 132 writes)
		< 2K      2K+     4K+     8K+    16K+    32K+    64K+   128K+
Reads:        0       0       0       0       0       0       0       0
Writes:       0       0       0       1     131       0       0       0
This output reveals the transfer speed to the SCSI devices connected to the controller based on channel ID, as well as detailed statistics concerning the amount and sizes of files read or written by that device. For example, this controller is communicating with the CD-ROM at 20 megabytes per second, while the tape drive is only communicating at 10 megabytes per second.

E.3.9. /proc/sys/

The /proc/sys/ directory is different from others in /proc/ because it not only provides information about the system but also allows the system administrator to immediately enable and disable kernel features.

Be careful when changing the content of /proc/sys/

Use caution when changing settings on a production system using the various files in the /proc/sys/ directory. Changing the wrong setting may render the kernel unstable, requiring a system reboot.
For this reason, be sure the options are valid for that file before attempting to change any value in /proc/sys/.
A good way to determine if a particular file can be configured, or if it is only designed to provide information, is to list it with the -l option at the shell prompt. If the file is writable, it may be used to configure the kernel. For example, a partial listing of /proc/sys/fs looks like the following:
-r--r--r--    1 root     root            0 May 10 16:14 dentry-state
-rw-r--r--    1 root     root            0 May 10 16:14 dir-notify-enable
-rw-r--r--    1 root     root            0 May 10 16:14 file-max
-r--r--r--    1 root     root            0 May 10 16:14 file-nr
In this listing, the files dir-notify-enable and file-max can be written to and, therefore, can be used to configure the kernel. The other files only provide feedback on current settings.
Changing a value within a /proc/sys/ file is done by echoing the new value into the file. For example, to enable the System Request Key on a running kernel, type the command:
echo 1 > /proc/sys/kernel/sysrq
This changes the value for sysrq from 0 (off) to 1 (on).
A few /proc/sys/ configuration files contain more than one value. To correctly send new values to them, place a space character between each value passed with the echo command, such as is done in this example:
echo 4 2 45 > /proc/sys/kernel/acct

Changes made using the echo command are not persistent

Any configuration changes made using the echo command disappear when the system is restarted. To make configuration changes take effect after the system is rebooted, refer to Sección E.4, “Using the sysctl Command”.
The /proc/sys/ directory contains several subdirectories controlling different aspects of a running kernel.

E.3.9.1. /proc/sys/dev/

This directory provides parameters for particular devices on the system. Most systems have at least two directories, cdrom/ and raid/. Customized kernels can have other directories, such as parport/, which provides the ability to share one parallel port between multiple device drivers.
The cdrom/ directory contains a file called info, which reveals a number of important CD-ROM parameters:
CD-ROM information, Id: cdrom.c 3.20 2003/12/17
drive name:             hdc
drive speed:            48
drive # of slots:       1
Can close tray:         1
Can open tray:          1
Can lock tray:          1
Can change speed:       1
Can select disk:        0
Can read multisession:  1
Can read MCN:           1
Reports media changed:  1
Can play audio:         1
Can write CD-R:         0
Can write CD-RW:        0
Can read DVD:           0
Can write DVD-R:        0
Can write DVD-RAM:      0
Can read MRW:           0
Can write MRW:          0
Can write RAM:          0
This file can be quickly scanned to discover the qualities of an unknown CD-ROM. If multiple CD-ROMs are available on a system, each device is given its own column of information.
Various files in /proc/sys/dev/cdrom, such as autoclose and checkmedia, can be used to control the system's CD-ROM. Use the echo command to enable or disable these features.
If RAID support is compiled into the kernel, a /proc/sys/dev/raid/ directory becomes available with at least two files in it: speed_limit_min and speed_limit_max. These settings determine the acceleration of RAID devices for I/O intensive tasks, such as resyncing the disks.

E.3.9.2. /proc/sys/fs/

This directory contains an array of options and information concerning various aspects of the file system, including quota, file handle, inode, and dentry information.
The binfmt_misc/ directory is used to provide kernel support for miscellaneous binary formats.
The important files in /proc/sys/fs/ include:
  • dentry-state — Provides the status of the directory cache. The file looks similar to the following:
    57411	52939	45	0	0	0
    
    The first number reveals the total number of directory cache entries, while the second number displays the number of unused entries. The third number tells the number of seconds between when a directory has been freed and when it can be reclaimed, and the fourth measures the pages currently requested by the system. The last two numbers are not used and display only zeros.
  • file-max — Lists the maximum number of file handles that the kernel allocates. Raising the value in this file can resolve errors caused by a lack of available file handles.
  • file-nr — Lists the number of allocated file handles, used file handles, and the maximum number of file handles.
  • overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively, for use with file systems that only support 16-bit group and user IDs.

E.3.9.3. /proc/sys/kernel/

This directory contains a variety of different configuration files that directly affect the operation of the kernel. Some of the most important files include:
  • acct — Controls the suspension of process accounting based on the percentage of free space available on the file system containing the log. By default, the file looks like the following:
    4	2	30
    
    The first value dictates the percentage of free space required for logging to resume, while the second value sets the threshold percentage of free space when logging is suspended. The third value sets the interval, in seconds, that the kernel polls the file system to see if logging should be suspended or resumed.
  • ctrl-alt-del — Controls whether Ctrl+Alt+Delete gracefully restarts the computer using init (0) or forces an immediate reboot without syncing the dirty buffers to disk (1).
  • domainname — Configures the system domain name, such as example.com.
  • exec-shield — Configures the Exec Shield feature of the kernel. Exec Shield provides protection against certain types of buffer overflow attacks.
    There are two possible values for this virtual file:
    • 0 — Disables Exec Shield.
    • 1 — Enables Exec Shield. This is the default value.

    Using Exec Shield

    If a system is running security-sensitive applications that were started while Exec Shield was disabled, these applications must be restarted when Exec Shield is enabled in order for Exec Shield to take effect.
  • hostname — Configures the system hostname, such as www.example.com.
  • hotplug — Configures the utility to be used when a configuration change is detected by the system. This is primarily used with USB and Cardbus PCI. The default value of /sbin/hotplug should not be changed unless testing a new program to fulfill this role.
  • modprobe — Sets the location of the program used to load kernel modules. The default value is /sbin/modprobe which means kmod calls it to load the module when a kernel thread calls kmod.
  • msgmax — Sets the maximum size of any message sent from one process to another and is set to 8192 bytes by default. Be careful when raising this value, as queued messages between processes are stored in non-swappable kernel memory. Any increase in msgmax would increase RAM requirements for the system.
  • msgmnb — Sets the maximum number of bytes in a single message queue. The default is 16384.
  • msgmni — Sets the maximum number of message queue identifiers. The default is 4008.
  • osrelease — Lists the Linux kernel release number. This file can only be altered by changing the kernel source and recompiling.
  • ostype — Displays the type of operating system. By default, this file is set to Linux, and this value can only be changed by changing the kernel source and recompiling.
  • overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively, for use with system calls on architectures that only support 16-bit group and user IDs.
  • panic — Defines the number of seconds the kernel postpones rebooting when the system experiences a kernel panic. By default, the value is set to 0, which disables automatic rebooting after a panic.
  • printk — This file controls a variety of settings related to printing or logging error messages. Each error message reported by the kernel has a loglevel associated with it that defines the importance of the message. The loglevel values break down in this order:
    • 0 — Kernel emergency. The system is unusable.
    • 1 — Kernel alert. Action must be taken immediately.
    • 2 — Condition of the kernel is considered critical.
    • 3 — General kernel error condition.
    • 4 — General kernel warning condition.
    • 5 — Kernel notice of a normal but significant condition.
    • 6 — Kernel informational message.
    • 7 — Kernel debug-level messages.
    Four values are found in the printk file:
    6     4     1     7
    
    Each of these values defines a different rule for dealing with error messages. The first value, called the console loglevel, defines the lowest priority of messages printed to the console. (Note that, the lower the priority, the higher the loglevel number.) The second value sets the default loglevel for messages without an explicit loglevel attached to them. The third value sets the lowest possible loglevel configuration for the console loglevel. The last value sets the default value for the console loglevel.
  • random/ directory — Lists a number of values related to generating random numbers for the kernel.
  • sem — Configures semaphore settings within the kernel. A semaphore is a System V IPC object that is used to control utilization of a particular process.
  • shmall — Sets the total amount of shared memory that can be used at one time on the system, in bytes. By default, this value is 2097152.
  • shmmax — Sets the largest shared memory segment size allowed by the kernel. By default, this value is 33554432. However, the kernel supports much larger values than this.
  • shmmni — Sets the maximum number of shared memory segments for the whole system. By default, this value is 4096.
  • sysrq — Activates the System Request Key, if this value is set to anything other than zero (0), the default.
    The System Request Key allows immediate input to the kernel through simple key combinations. For example, the System Request Key can be used to immediately shut down or restart a system, sync all mounted file systems, or dump important information to the console. To initiate a System Request Key, type Alt+SysRq+ system request code . Replace system request code with one of the following system request codes:
    • r — Disables raw mode for the keyboard and sets it to XLATE (a limited keyboard mode which does not recognize modifiers such as Alt, Ctrl, or Shift for all keys).
    • k — Kills all processes active in a virtual console. Also called Secure Access Key (SAK), it is often used to verify that the login prompt is spawned from init and not a trojan copy designed to capture usernames and passwords.
    • b — Reboots the kernel without first unmounting file systems or syncing disks attached to the system.
    • c — Crashes the system without first unmounting file systems or syncing disks attached to the system.
    • o — Shuts off the system.
    • s — Attempts to sync disks attached to the system.
    • u — Attempts to unmount and remount all file systems as read-only.
    • p — Outputs all flags and registers to the console.
    • t — Outputs a list of processes to the console.
    • m — Outputs memory statistics to the console.
    • 0 through 9 — Sets the log level for the console.
    • e — Kills all processes except init using SIGTERM.
    • i — Kills all processes except init using SIGKILL.
    • l — Kills all processes using SIGKILL (including init). The system is unusable after issuing this System Request Key code.
    • h — Displays help text.
    This feature is most beneficial when using a development kernel or when experiencing system freezes.

    Be careful when enabling the System Request Key feature

    The System Request Key feature is considered a security risk because an unattended console provides an attacker with access to the system. For this reason, it is turned off by default.
    Refer to /usr/share/doc/kernel-doc-kernel_version/Documentation/sysrq.txt for more information about the System Request Key.
  • tainted — Indicates whether a non-GPL module is loaded.
    • 0 — No non-GPL modules are loaded.
    • 1 — At least one module without a GPL license (including modules with no license) is loaded.
    • 2 — At least one module was force-loaded with the command insmod -f.
  • threads-max — Sets the maximum number of threads to be used by the kernel, with a default value of 2048.
  • version — Displays the date and time the kernel was last compiled. The first field in this file, such as #3, relates to the number of times a kernel was built from the source base.

E.3.9.4. /proc/sys/net/

This directory contains subdirectories concerning various networking topics. Various configurations at the time of kernel compilation make different directories available here, such as ethernet/, ipv4/, ipx/, and ipv6/. By altering the files within these directories, system administrators are able to adjust the network configuration on a running system.
Given the wide variety of possible networking options available with Linux, only the most common /proc/sys/net/ directories are discussed.
The /proc/sys/net/core/ directory contains a variety of settings that control the interaction between the kernel and networking layers. The most important of these files are:
  • message_burst — Sets the amount of time in tenths of a second required to write a new warning message. This setting is used to mitigate Denial of Service (DoS) attacks. The default setting is 10.
  • message_cost — Sets a cost on every warning message. The higher the value of this file (default of 5), the more likely the warning message is ignored. This setting is used to mitigate DoS attacks.
    The idea of a DoS attack is to bombard the targeted system with requests that generate errors and fill up disk partitions with log files or require all of the system's resources to handle the error logging. The settings in message_burst and message_cost are designed to be modified based on the system's acceptable risk versus the need for comprehensive logging.
  • netdev_max_backlog — Sets the maximum number of packets allowed to queue when a particular interface receives packets faster than the kernel can process them. The default value for this file is 1000.
  • optmem_max — Configures the maximum ancillary buffer size allowed per socket.
  • rmem_default — Sets the receive socket buffer default size in bytes.
  • rmem_max — Sets the receive socket buffer maximum size in bytes.
  • wmem_default — Sets the send socket buffer default size in bytes.
  • wmem_max — Sets the send socket buffer maximum size in bytes.
The /proc/sys/net/ipv4/ directory contains additional networking settings. Many of these settings, used in conjunction with one another, are useful in preventing attacks on the system or when using the system to act as a router.

Be careful when changing these files

An erroneous change to these files may affect remote connectivity to the system.
The following is a list of some of the more important files within the /proc/sys/net/ipv4/ directory:
  • icmp_echo_ignore_all and icmp_echo_ignore_broadcasts — Allows the kernel to ignore ICMP ECHO packets from every host or only those originating from broadcast and multicast addresses, respectively. A value of 0 allows the kernel to respond, while a value of 1 ignores the packets.
  • ip_default_ttl — Sets the default Time To Live (TTL), which limits the number of hops a packet may make before reaching its destination. Increasing this value can diminish system performance.
  • ip_forward — Permits interfaces on the system to forward packets to one other. By default, this file is set to 0. Setting this file to 1 enables network packet forwarding.
  • ip_local_port_range — Specifies the range of ports to be used by TCP or UDP when a local port is needed. The first number is the lowest port to be used and the second number specifies the highest port. Any systems that expect to require more ports than the default 1024 to 4999 should use a range from 32768 to 61000.
  • tcp_syn_retries — Provides a limit on the number of times the system re-transmits a SYN packet when attempting to make a connection.
  • tcp_retries1 — Sets the number of permitted re-transmissions attempting to answer an incoming connection. Default of 3.
  • tcp_retries2 — Sets the number of permitted re-transmissions of TCP packets. Default of 15.
The file called
/usr/share/doc/kernel-doc-kernel_version/Documentation/networking/ip-sysctl.txt
contains a complete list of files and options available in the /proc/sys/net/ipv4/ directory.
A number of other directories exist within the /proc/sys/net/ipv4/ directory and each covers a different aspect of the network stack. The /proc/sys/net/ipv4/conf/ directory allows each system interface to be configured in different ways, including the use of default settings for unconfigured devices (in the /proc/sys/net/ipv4/conf/default/ subdirectory) and settings that override all special configurations (in the /proc/sys/net/ipv4/conf/all/ subdirectory).
The /proc/sys/net/ipv4/neigh/ directory contains settings for communicating with a host directly connected to the system (called a network neighbor) and also contains different settings for systems more than one hop away.
Routing over IPV4 also has its own directory, /proc/sys/net/ipv4/route/. Unlike conf/ and neigh/, the /proc/sys/net/ipv4/route/ directory contains specifications that apply to routing with any interfaces on the system. Many of these settings, such as max_size, max_delay, and min_delay, relate to controlling the size of the routing cache. To clear the routing cache, write any value to the flush file.
Additional information about these directories and the possible values for their configuration files can be found in:
/usr/share/doc/kernel-doc-kernel_version/Documentation/filesystems/proc.txt

E.3.9.5. /proc/sys/vm/

This directory facilitates the configuration of the Linux kernel's virtual memory (VM) subsystem. The kernel makes extensive and intelligent use of virtual memory, which is commonly referred to as swap space.
The following files are commonly found in the /proc/sys/vm/ directory:
  • block_dump — Configures block I/O debugging when enabled. All read/write and block dirtying operations done to files are logged accordingly. This can be useful if diagnosing disk spin up and spin downs for laptop battery conservation. All output when block_dump is enabled can be retrieved via dmesg. The default value is 0.

    Stopping the klogd daemon

    If block_dump is enabled at the same time as kernel debugging, it is prudent to stop the klogd daemon, as it generates erroneous disk activity caused by block_dump.
  • dirty_background_ratio — Starts background writeback of dirty data at this percentage of total memory, via a pdflush daemon. The default value is 10.
  • dirty_expire_centisecs — Defines when dirty in-memory data is old enough to be eligible for writeout. Data which has been dirty in-memory for longer than this interval is written out next time a pdflush daemon wakes up. The default value is 3000, expressed in hundredths of a second.
  • dirty_ratio — Starts active writeback of dirty data at this percentage of total memory for the generator of dirty data, via pdflush. The default value is 20.
  • dirty_writeback_centisecs — Defines the interval between pdflush daemon wakeups, which periodically writes dirty in-memory data out to disk. The default value is 500, expressed in hundredths of a second.
  • laptop_mode — Minimizes the number of times that a hard disk needs to spin up by keeping the disk spun down for as long as possible, therefore conserving battery power on laptops. This increases efficiency by combining all future I/O processes together, reducing the frequency of spin ups. The default value is 0, but is automatically enabled in case a battery on a laptop is used.
    This value is controlled automatically by the acpid daemon once a user is notified battery power is enabled. No user modifications or interactions are necessary if the laptop supports the ACPI (Advanced Configuration and Power Interface) specification.
    For more information, refer to the following installed documentation:
    /usr/share/doc/kernel-doc-kernel_version/Documentation/laptop-mode.txt
  • max_map_count — Configures the maximum number of memory map areas a process may have. In most cases, the default value of 65536 is appropriate.
  • min_free_kbytes — Forces the Linux VM (virtual memory manager) to keep a minimum number of kilobytes free. The VM uses this number to compute a pages_min value for each lowmem zone in the system. The default value is in respect to the total memory on the machine.
  • nr_hugepages — Indicates the current number of configured hugetlb pages in the kernel.
    For more information, refer to the following installed documentation:
    /usr/share/doc/kernel-doc-kernel_version/Documentation/vm/hugetlbpage.txt
  • nr_pdflush_threads — Indicates the number of pdflush daemons that are currently running. This file is read-only, and should not be changed by the user. Under heavy I/O loads, the default value of two is increased by the kernel.
  • overcommit_memory — Configures the conditions under which a large memory request is accepted or denied. The following three modes are available:
    • 0 — The kernel performs heuristic memory over commit handling by estimating the amount of memory available and failing requests that are blatantly invalid. Unfortunately, since memory is allocated using a heuristic rather than a precise algorithm, this setting can sometimes allow available memory on the system to be overloaded. This is the default setting.
    • 1 — The kernel performs no memory over commit handling. Under this setting, the potential for memory overload is increased, but so is performance for memory intensive tasks (such as those executed by some scientific software).
    • 2 — The kernel fails requests for memory that add up to all of swap plus the percent of physical RAM specified in /proc/sys/vm/overcommit_ratio. This setting is best for those who desire less risk of memory overcommitment.

      Using this setting

      This setting is only recommended for systems with swap areas larger than physical memory.
  • overcommit_ratio — Specifies the percentage of physical RAM considered when /proc/sys/vm/overcommit_memory is set to 2. The default value is 50.
  • page-cluster — Sets the number of pages read in a single attempt. The default value of 3, which actually relates to 16 pages, is appropriate for most systems.
  • swappiness — Determines how much a machine should swap. The higher the value, the more swapping occurs. The default value, as a percentage, is set to 60.
All kernel-based documentation can be found in the following locally installed location:
/usr/share/doc/kernel-doc-kernel_version/Documentation/, which contains additional information.

E.3.10. /proc/sysvipc/

This directory contains information about System V IPC resources. The files in this directory relate to System V IPC calls for messages (msg), semaphores (sem), and shared memory (shm).

E.3.11. /proc/tty/

This directory contains information about the available and currently used tty devices on the system. Originally called teletype devices, any character-based data terminals are called tty devices.
In Linux, there are three different kinds of tty devices. Serial devices are used with serial connections, such as over a modem or using a serial cable. Virtual terminals create the common console connection, such as the virtual consoles available when pressing Alt+<F-key> at the system console. Pseudo terminals create a two-way communication that is used by some higher level applications, such as XFree86. The drivers file is a list of the current tty devices in use, as in the following example:
serial               /dev/cua        5  64-127 serial:callout
serial               /dev/ttyS       4  64-127 serial
pty_slave            /dev/pts      136   0-255 pty:slave
pty_master           /dev/ptm      128   0-255 pty:master
pty_slave            /dev/ttyp       3   0-255 pty:slave
pty_master           /dev/pty        2   0-255 pty:master
/dev/vc/0            /dev/vc/0       4       0 system:vtmaster
/dev/ptmx            /dev/ptmx       5       2 system
/dev/console         /dev/console    5       1 system:console
/dev/tty             /dev/tty        5       0 system:/dev/tty
unknown              /dev/vc/%d      4    1-63 console
The /proc/tty/driver/serial file lists the usage statistics and status of each of the serial tty lines.
In order for tty devices to be used as network devices, the Linux kernel enforces line discipline on the device. This allows the driver to place a specific type of header with every block of data transmitted over the device, making it possible for the remote end of the connection to a block of data as just one in a stream of data blocks. SLIP and PPP are common line disciplines, and each are commonly used to connect systems to one other over a serial link.

E.3.12. /proc/PID/

Out of Memory (OOM) refers to a computing state where all available memory, including swap space, has been allocated. When this situation occurs, it will cause the system to panic and stop functioning as expected. There is a switch that controls OOM behavior in /proc/sys/vm/panic_on_oom. When set to 1 the kernel will panic on OOM. A setting of 0 instructs the kernel to call a function named oom_killer on an OOM. Usually, oom_killer can kill rogue processes and the system will survive.
The easiest way to change this is to echo the new value to /proc/sys/vm/panic_on_oom.
# cat /proc/sys/vm/panic_on_oom
1

# echo 0 > /proc/sys/vm/panic_on_oom

# cat /proc/sys/vm/panic_on_oom
0
It is also possible to prioritize which processes get killed by adjusting the oom_killer score. In /proc/PID/ there are two tools labeled oom_adj and oom_score. Valid scores for oom_adj are in the range -16 to +15. To see the current oom_killer score, view the oom_score for the process. oom_killer will kill processes with the highest scores first.
This example adjusts the oom_score of a process with a PID of 12465 to make it less likely that oom_killer will kill it.
# cat /proc/12465/oom_score
79872

# echo -5 > /proc/12465/oom_adj

# cat /proc/12465/oom_score
78
There is also a special value of -17, which disables oom_killer for that process. In the example below, oom_score returns a value of 0, indicating that this process would not be killed.
# cat /proc/12465/oom_score
78

# echo -17 > /proc/12465/oom_adj

# cat /proc/12465/oom_score
0
A function called badness() is used to determine the actual score for each process. This is done by adding up 'points' for each examined process. The process scoring is done in the following way:
  1. The basis of each process's score is its memory size.
  2. The memory size of any of the process's children (not including a kernel thread) is also added to the score
  3. The process's score is increased for 'niced' processes and decreased for long running processes.
  4. Processes with the CAP_SYS_ADMIN and CAP_SYS_RAWIO capabilities have their scores reduced.
  5. The final score is then bitshifted by the value saved in the oom_adj file.
Thus, a process with the highest oom_score value will most probably be a non-priviliged, recently started process that, along with its children, uses a large amount of memory, has been 'niced', and handles no raw I/O.

E.4. Using the sysctl Command

The /sbin/sysctl command is used to view, set, and automate kernel settings in the /proc/sys/ directory.
For a quick overview of all settings configurable in the /proc/sys/ directory, type the /sbin/sysctl -a command as root. This creates a large, comprehensive list, a small portion of which looks something like the following:
net.ipv4.route.min_delay = 2 kernel.sysrq = 0 kernel.sem = 250     32000     32     128
This is the same information seen if each of the files were viewed individually. The only difference is the file location. For example, the /proc/sys/net/ipv4/route/min_delay file is listed as net.ipv4.route.min_delay, with the directory slashes replaced by dots and the proc.sys portion assumed.
The sysctl command can be used in place of echo to assign values to writable files in the /proc/sys/ directory. For example, instead of using the command
echo 1 > /proc/sys/kernel/sysrq
use the equivalent sysctl command as follows:
sysctl -w kernel.sysrq="1"
kernel.sysrq = 1
While quickly setting single values like this in /proc/sys/ is helpful during testing, this method does not work as well on a production system as special settings within /proc/sys/ are lost when the machine is rebooted. To preserve custom settings, add them to the /etc/sysctl.conf file.
Each time the system boots, systemd executes sysctl using the /etc/sysctl.conf configuration file to determine the values passed to the kernel. Any values added to /etc/sysctl.conf therefore take effect each time the system boots.
Additionally, systemd determines the contents of several directories including /etc/sysctl.d/ and reads values from any file with the .conf extension. The /etc/sysctl.d/ directory can be used to organize values into different files, and also permits them to be disabled by changing the extension of the file. For a complete list of directories read by systemd, refer to the sysctl.d(5) manual page.

E.5. Referencias

Below are additional sources of information about proc file system.

Documentación instalada

Some of the best documentation about the proc file system is installed on the system by default.
  • /usr/share/doc/kernel-doc-kernel_version/Documentation/filesystems/proc.txt — Contains assorted, but limited, information about all aspects of the /proc/ directory.
  • /usr/share/doc/kernel-doc-kernel_version/Documentation/sysrq.txt — An overview of System Request Key options.
  • /usr/share/doc/kernel-doc-kernel_version/Documentation/sysctl/ — A directory containing a variety of sysctl tips, including modifying values that concern the kernel (kernel.txt), accessing file systems (fs.txt), and virtual memory use (vm.txt).
  • /usr/share/doc/kernel-doc-kernel_version/Documentation/networking/ip-sysctl.txt — A detailed overview of IP networking options.

Sitios Web útiles

  • http://www.linuxhq.com/ — This website maintains a complete database of source, patches, and documentation for various versions of the Linux kernel.

Historial de revisiones

Historial de revisiones
Revisión 1-0Tue May 29 2012Jaromír Hradílek
Fedora 17 release of the System Administrator's Guide.

Índice

Símbolos

.fetchmailrc , Opciones de configuración de Fetchmail
server options, Opciones de servidor
user options, Opciones de usuario
.htaccess, Common httpd.conf Directives
(ver también Apache HTTP Server)
.htpasswd, Common httpd.conf Directives
(ver también Apache HTTP Server)
.procmailrc , Configuración de Procmail
/dev/oprofile/ , Understanding /dev/oprofile/
/dev/shm, Using the df Command
/etc/named.conf (ver BIND)
/etc/sysconfig/ directory (ver sysconfig directory)
/etc/sysconfig/dhcpd , Iniciar y detener el servidor
/proc/ directory (ver proc file system)
/run, Using the df Command
/sys/fs/cgroup, Using the df Command
/var/spool/anacron , Configuring Anacron Jobs
/var/spool/cron , Configuring Cron Jobs

(ver OProfile)

A

Access Control
configuring in SSSD, Configurando Control de Acceso
actualización del kernel
preparación, Preparación para la actualización
adding
group, Añadir un nuevo grupo
user, Añadir un nuevo usuario
Agente de usuario de correo, Configuración del Agente de Transporte de Correo (MTA)
anacron, Cron y Anacron
anacron configuration file, Configuring Anacron Jobs
user-defined tasks, Configuring Anacron Jobs
anacrontab , Configuring Anacron Jobs
Apache HTTP Server
additional resources
installed documentation, Documentación instalada
useful websites, Sitios Web útiles
checking configuration, Editing the Configuration Files
checking status, Checking the Service Status
directives
<Directory>, Common httpd.conf Directives
<IfDefine>, Common httpd.conf Directives
<IfModule>, Common httpd.conf Directives
<Location>, Common httpd.conf Directives
<Proxy>, Common httpd.conf Directives
<VirtualHost>, Common httpd.conf Directives
AccessFileName, Common httpd.conf Directives
Action, Common httpd.conf Directives
AddDescription, Common httpd.conf Directives
AddEncoding, Common httpd.conf Directives
AddHandler, Common httpd.conf Directives
AddIcon, Common httpd.conf Directives
AddIconByEncoding, Common httpd.conf Directives
AddIconByType, Common httpd.conf Directives
AddLanguage, Common httpd.conf Directives
AddType, Common httpd.conf Directives
Alias, Common httpd.conf Directives
Allow, Common httpd.conf Directives
AllowOverride, Common httpd.conf Directives
BrowserMatch, Common httpd.conf Directives
CacheDefaultExpire, Common httpd.conf Directives
CacheDisable, Common httpd.conf Directives
CacheEnable, Common httpd.conf Directives
CacheLastModifiedFactor, Common httpd.conf Directives
CacheMaxExpire, Common httpd.conf Directives
CacheNegotiatedDocs, Common httpd.conf Directives
CacheRoot, Common httpd.conf Directives
CustomLog, Common httpd.conf Directives
DefaultIcon, Common httpd.conf Directives
DefaultType, Common httpd.conf Directives
Deny, Common httpd.conf Directives
DirectoryIndex, Common httpd.conf Directives
DocumentRoot, Common httpd.conf Directives
ErrorDocument, Common httpd.conf Directives
ErrorLog, Common httpd.conf Directives
ExtendedStatus, Common httpd.conf Directives
Group, Common httpd.conf Directives
HeaderName, Common httpd.conf Directives
HostnameLookups, Common httpd.conf Directives
Include, Common httpd.conf Directives
IndexIgnore, Common httpd.conf Directives
IndexOptions, Common httpd.conf Directives
KeepAlive, Common httpd.conf Directives
KeepAliveTimeout, Common httpd.conf Directives
LanguagePriority, Common httpd.conf Directives
Listen, Common httpd.conf Directives
LoadModule, Common httpd.conf Directives
LogFormat, Common httpd.conf Directives
LogLevel, Common httpd.conf Directives
MaxClients, Common Multi-Processing Module Directives
MaxKeepAliveRequests, Common httpd.conf Directives
MaxSpareServers, Common Multi-Processing Module Directives
MaxSpareThreads, Common Multi-Processing Module Directives
MinSpareServers, Common Multi-Processing Module Directives
MinSpareThreads, Common Multi-Processing Module Directives
NameVirtualHost, Common httpd.conf Directives
Options, Common httpd.conf Directives
Order, Common httpd.conf Directives
PidFile, Common httpd.conf Directives
ProxyRequests, Common httpd.conf Directives
ReadmeName, Common httpd.conf Directives
Redirect, Common httpd.conf Directives
ScriptAlias, Common httpd.conf Directives
ServerAdmin, Common httpd.conf Directives
ServerName, Common httpd.conf Directives
ServerRoot, Common httpd.conf Directives
ServerSignature, Common httpd.conf Directives
ServerTokens, Common httpd.conf Directives
SetEnvIf, Common ssl.conf Directives
StartServers, Common Multi-Processing Module Directives
SuexecUserGroup, Common httpd.conf Directives
ThreadsPerChild, Common Multi-Processing Module Directives
Timeout, Common httpd.conf Directives
TypesConfig, Common httpd.conf Directives
UseCanonicalName, Common httpd.conf Directives
User, Common httpd.conf Directives
UserDir, Common httpd.conf Directives
directories
/etc/httpd/, Common httpd.conf Directives
/etc/httpd/conf.d/, Editing the Configuration Files, Common httpd.conf Directives
/usr/lib/httpd/modules/, Common httpd.conf Directives, Working with Modules
/usr/lib64/httpd/modules/, Common httpd.conf Directives, Working with Modules
/var/cache/mod_proxy/, Common httpd.conf Directives
/var/www/cgi-bin/, Common httpd.conf Directives
/var/www/html/, Common httpd.conf Directives
/var/www/icons/, Common httpd.conf Directives
~/public_html/, Common httpd.conf Directives
files
.htaccess, Common httpd.conf Directives
.htpasswd, Common httpd.conf Directives
/etc/httpd/conf.d/ssl.conf, Common ssl.conf Directives, Enabling the mod_ssl Module
/etc/httpd/conf/httpd.conf, Editing the Configuration Files, Common httpd.conf Directives, Common Multi-Processing Module Directives
/etc/httpd/logs/access_log, Common httpd.conf Directives
/etc/httpd/logs/error_log, Common httpd.conf Directives
/etc/httpd/run/httpd.pid, Common httpd.conf Directives
/etc/mime.types, Common httpd.conf Directives
modules
developing, Writing a Module
loading, Loading a Module
mod_asis, Notable Changes
mod_cache, New Features
mod_cern_meta, Notable Changes
mod_disk_cache, New Features
mod_ext_filter, Notable Changes
mod_proxy_balancer, New Features
mod_rewrite, Common httpd.conf Directives
mod_ssl, Setting Up an SSL Server
mod_userdir, Updating the Configuration
restarting, Restarting the Service
SSL server
certificate, An Overview of Certificates and Security, Using an Existing Key and Certificate, Generating a New Key and Certificate
certificate authority, An Overview of Certificates and Security
private key, An Overview of Certificates and Security, Using an Existing Key and Certificate, Generating a New Key and Certificate
public key, An Overview of Certificates and Security
starting, Starting the Service
stopping, Stopping the Service
version 2.2
changes, Notable Changes
features, New Features
updating from version 2.0, Updating the Configuration
virtual host, Setting Up Virtual Hosts
at , At y Batch
additional resources, Recursos adicionales
autenticación
Herramienta de configuración de autenticación , La herramienta de configuración de autenticación
authconfig (ver herramienta de configuración de autenticación )
comandos , Versión de línea de comandos
authentication
using fingerprint support , Opciones avanzadas
using smart card authentication , Opciones avanzadas
Authentication Configuration Tool
and Kerberos authentication , Identidad y autenticación
and NIS authentication , Identidad y autenticación
authoritative nameserver (ver BIND)

B

batch , At y Batch
additional resources, Recursos adicionales
Berkeley Internet Name Domain (ver BIND)
BIND
additional resources
installed documentation, Documentación instalada
related books, Libros relacionados
useful websites, Sitios Web útiles
common mistakes, Errores comunes que debe evitar
configuration
acl statement, Tipos de declaraciones comúnes
comment tags, Etiquetas de comentarios
controls statement, Otros tipos de declaraciones
include statement, Tipos de declaraciones comúnes
key statement, Otros tipos de declaraciones
logging statement, Otros tipos de declaraciones
options statement, Tipos de declaraciones comúnes
server statement, Otros tipos de declaraciones
trusted-keys statement, Otros tipos de declaraciones
view statement, Otros tipos de declaraciones
zone statement, Tipos de declaraciones comúnes
directories
/etc/named/, Configuring the named Service
/var/named/, Editing Zone Files
/var/named/data/, Editing Zone Files
/var/named/dynamic/, Editing Zone Files
/var/named/slaves/, Editing Zone Files
features
Automatic Zone Transfer (AXFR), Incremental Zone Transfers (IXFR)
DNS Security Extensions (DNSSEC), DNS Security Extensions (DNSSEC)
Incremental Zone Transfer (IXFR), Incremental Zone Transfers (IXFR)
Internet Protocol version 6 (IPv6), Internet Protocol version 6 (IPv6)
multiple views, Vistas múltiples
Transaction SIGnature (TSIG), Transaction SIGnatures (TSIG)
files
/etc/named.conf, Configuring the named Service, Configuring the Utility
/etc/rndc.conf, Configuring the Utility
/etc/rndc.key, Configuring the Utility
registro de recursos, Zonas de servidores de nombres
tipo
servidor de nombre (esclavo) secundario, Zonas de servidores de nombres
tipos
servidor de nombre primario (maestro), Zonas de servidores de nombres
types
authoritative nameserver, Tipos de servidores de nombres
primary (master) nameserver, Tipos de servidores de nombres
recursive nameserver, Tipos de servidores de nombres
secondary (slave) nameserver, Tipos de servidores de nombres
utilities
dig, BIND as a Nameserver, Using the dig Utility, DNS Security Extensions (DNSSEC)
named, BIND as a Nameserver, Configuring the named Service
rndc, BIND as a Nameserver, Using the rndc Utility
zonas
descripción, Zonas de servidores de nombres
zones
$INCLUDE directive, Common Directives
$ORIGIN directive, Common Directives
$TTL directive, Common Directives
A (Address) resource record, Common Resource Records
CNAME (Canonical Name) resource record, Common Resource Records
comment tags, Etiquetas de comentarios
example usage, A Simple Zone File, A Reverse Name Resolution Zone File
MX (Mail Exchange) resource record, Common Resource Records
NS (Nameserver) resource record, Common Resource Records
PTR (Pointer) resource record, Common Resource Records
SOA (Start of Authority) resource record, Common Resource Records
blkid, Using the blkid Command
block devices, /proc/devices
(ver también /proc/devices )
definition of, /proc/devices
bonding (ver channel bonding)
borrar archivos de memoria temporal (caché)
en SSSD, Soporte para Dominios Múltiples

C

ch-email .fetchmailrc
global options, Opciones globales
chage command
forcing password expiration with, Enabling Password Aging
channel bonding
configuration, Using Channel Bonding
description, Using Channel Bonding
interface
configuration of, Interfaces de unión de canales
parameters to bonded interfaces, Bonding Module Directives
channel bonding interface (ver kernel module)
character devices, /proc/devices
(ver también /proc/devices )
definition of, /proc/devices
comentarios
información de contacto para esta manual, Comentarios
configuración del teclado (ver Región y Lenguaje)
Configuration File Changes, Conservando cambios en los Archivos de Configuracion
CPU usage, Viewing CPU Usage
crash
analyzing the dump
message buffer, Displaying the Message Buffer
open files, Displaying Open Files
processes, Displaying a Process Status
stack trace, Displaying a Backtrace
virtual memory, Displaying Virtual Memory Information
opening the dump image, Running the crash Utility
system requirements, Analyzing the Core Dump
Cron, Automating System Tasks
cron , Cron y Anacron
additional resources, Recursos adicionales
cron configuration file, Configuring Cron Jobs
user-defined tasks, Configuring Cron Jobs
crontab , Configuring Cron Jobs
CUPS (ver Printer Configuration)

D

de red
archivos de configuración, Archivos de configuración de red
archivos de configuración de interfaz, Archivos de configuración de interfaz
configuración, Archivos de configuración de interfaz
interfaces
Ethernet, Interfaces Ethernet
scripts, Interfaces de red
Denial of Service attack, /proc/sys/net/
(ver también /proc/sys/net/ directory)
definition of, /proc/sys/net/
desktop environments (ver X)
df, Using the df Command
DHCP, DHCP Servers
additional resources, Recursos adicionales
client configuration, Configuración de un cliente DHCP
command line options, Iniciar y detener el servidor
connecting to, Configuración de un cliente DHCP
dhcpd.conf, Archivo de configuración
dhcpd.leases , Iniciar y detener el servidor
dhcpd6.conf, DHCP for IPv6 (DHCPv6)
DHCPv6, DHCP for IPv6 (DHCPv6)
dhcrelay , Agente de transmisión DHCP
grupo, Archivo de configuración
opciones, Archivo de configuración
parámetros globales parameters, Archivo de configuración
reasons for using, Motivos para usar el protocolo DHCP
Relay Agent, Agente de transmisión DHCP
server configuration, Configuración de un servidor DHCP
shared-network , Archivo de configuración
starting the server, Iniciar y detener el servidor
stopping the server, Iniciar y detener el servidor
subnet, Archivo de configuración
dhcpd.conf, Archivo de configuración
dhcpd.leases, Iniciar y detener el servidor
dhcrelay , Agente de transmisión DHCP
dig (ver BIND)
directory server (ver OpenLDAP)
display managers (ver X)
DNS
definición, DNS Servers
(ver también BIND)
documentation
finding installed, Ejemplos comunes y prácticos sobre el uso de RPM
dominios múltiples
especificando en SSSD, Soporte para Dominios Múltiples
DoS attack (ver Denial of Service attack)
drivers (ver kernel module)
DSA keys
generating, Generar pares de claves
du, Using the du Command
Dynamic Host Configuration Protocol (ver DHCP)

E

email
additional resources, Recursos adicionales
installed documentation, Documentación instalada
related books, Libros relacionados
useful websites, Sitios Web útiles
Fetchmail, Fetchmail
history of, Mail Servers
mail server
Dovecot, Dovecot
Postfix, Postfix
Procmail, Agente de entrega de correo
program classifications, Clasificaciones de los programas de correo
protocols, Protocolos de correo electrónico
IMAP, IMAP
POP, POP
SMTP, SMTP
security, Comunicación segura
clients, Clientes de correo electrónico seguros
servers, Asegurar las comunicaciones de cliente de correo
Sendmail, Sendmail
spam
filtering out, Filtros de correo basura
types
Mail Delivery Agent, Mail Delivery Agent
Mail Transport Agent, Mail Transport Agent
Mail User Agent, Mail User Agent
epoch, /proc/stat
(ver también /proc/stat )
definition of, /proc/stat
Ethernet (ver red)
exec-shield
enabling, /proc/sys/kernel/
introducing, /proc/sys/kernel/
execution domains, /proc/execdomains
(ver también /proc/execdomains )
definition of, /proc/execdomains
expiration of password, forcing, Enabling Password Aging

F

Fecha, Usando la herramienta de configuración de fecha y hora
(ver también Fecha y Hora)
fecha, Cambiando la fecha
Fecha y Hora
configuración de la Zona horaria, Usando la herramienta de configuración de fecha y hora
Fecha del Sistema, Usando la herramienta de configuración de fecha y hora
Hora, Usando la herramienta de configuración de fecha y hora
Fedora installation media
installable packages, Encontrar paquetes RPM
Fetchmail, Fetchmail
additional resources, Recursos adicionales
command options, Opciones de comando de Fetchmail
informational, Opciones de depuración o información
special, Opciones especiales
configuration options, Opciones de configuración de Fetchmail
global options, Opciones globales
server options, Opciones de servidor
user options, Opciones de usuario
file system
virtual (ver proc file system)
files, proc file system
changing, Changing Virtual Files, Using the sysctl Command
viewing, Viewing Virtual Files, Using the sysctl Command
findmnt, Using the findmnt Command
findsmb , Línea de comandos
findsmb program, Programas de distribución Samba
FQDN (ver nombre de dominio completo)
frame buffer device, /proc/fb
(ver también /proc/fb )
free, Using the free Command
FTP, FTP
(ver también vsftpd )
definción de, FTP
introducción, El Protocolo de Transferencia de Archivo
modo activo, Puertos múltiples, modos múltiples
modo pasivo, Puertos múltiples, modos múltiples
puerto de comando, Puertos múltiples, modos múltiples
puerto de datos, Puertos múltiples, modos múltiples
servidor de software
Acelerador de Contenido RED HAT , Servidores FTP
vsftpd , Servidores FTP

G

gestor de arranque
verificando, Configuración del gestor de arranque
gestor de arranque OS/400
archivo de configuración, Configurando el gestor de arranque del OS/400
configuración, Configurando el gestor de arranque del OS/400
GNOME, Entornos de escritorio
(ver también X)
gnome-system-log (ver Log File Viewer )
gnome-system-monitor, Using the System Monitor Tool, Using the System Monitor Tool, Using the System Monitor Tool, Using the System Monitor Tool
GnuPG
verificando las firmas RPM, Revisando la firma de los paquetes
group configuration
adding groups, Añadir un nuevo grupo
filtering list of groups, Viewing Users and Groups
groupadd, Añadir un nuevo grupo
modify users in groups, Modificar las propiedades del grupo
modifying group properties, Modificar las propiedades del grupo
viewing list of groups, Using the User Manager Tool
groups (ver group configuration)
additional resources, Recursos adicionales
installed documentation, Documentación instalada
GID, Managing Users and Groups
introducing, Managing Users and Groups
shared directories, Creating Group Directories
tools for management of
groupadd, Grupos de usuario privado, Using Command Line Tools
system-config-users, Grupos de usuario privado
User Manager, Using Command Line Tools
user private, Grupos de usuario privado
GRUB 2 boot loader
configuration file, Configuring the GRUB 2 Boot Loader
configuring, Configuring the GRUB 2 Boot Loader

H

hardware
viewing, Viewing Hardware Information
herramienta
herramienta de configuración de autenticación , La herramienta de configuración de autenticación
Herramienta de configuración de autenticación
y autenticación Winbind , Identidad y autenticación
y LDAP , Identidad y autenticación
y NIS , Identidad y autenticación
y Winbind , Identidad y autenticación
hora, Cambiando la fecha
httpd (ver Apache HTTP Server)
hugepages
configuration of, /proc/sys/vm/

I

ifdown , Scripts de control de interfaz
ifup , Scripts de control de interfaz
imagen de disco RAM inicial
verificar, Verificación de la imagen de disco RAM inicial
imagen inicial de disco RAM
verificando
IBM eServer System i, Verificación de la imagen de disco RAM inicial
information
about your system, System Monitoring Tools
initial RPM repositories
installable packages, Encontrar paquetes RPM
insmod , Loading a Module
(ver también kernel module)
instalación del kernel, Actualización Manual del Kernel
installing package groups
installing package groups with PackageKit, Installing and Removing Package Groups

K

KDE, Entornos de escritorio
(ver también X)
kdump
additional resources
installed documents, Documentación instalada
manual pages, Documentación instalada
websites, Sitios Web útiles
analyzing the dump (ver crash)
configuring the service
default action, The Expert Settings Tab, Changing the Default Action
dump image compression, The Expert Settings Tab, Configuring the Core Collector
filtering level, The Filtering Settings Tab, Configuring the Core Collector
initial RAM disk, The Expert Settings Tab, Configuring the Memory Usage
kernel image, The Expert Settings Tab, Configuring the Memory Usage
kernel options, The Expert Settings Tab, Configuring the Memory Usage
memory usage, Configuring the Memory Usage, The Basic Settings Tab, Configuring the Memory Usage
supported targets, The Target Settings Tab, Configuring the Target Type
target location, The Target Settings Tab, Configuring the Target Type
enabling the service, Enabling the Service, Enabling the Service, Enabling the Service
installing, Installing the kdump Service
running the service, Enabling the Service
system requirements, Configuring the kdump Service
testing the configuration, Testing the Configuration
kernel
actualización
preparación, Preparación para la actualización
trabajando con medios de arranque, Preparación para la actualización
actualización del kernel disponible, Descarga el Kernel actualizado
Avisos de seguridad, Descarga el Kernel actualizado
actualizacón del kernel disponible
a partir del sistema de actualización de Fedora, Descarga el Kernel actualizado
actualizando el kernel, Actualización Manual del Kernel
descargando, Descarga el Kernel actualizado
instalaciôn de los paquetes del kernel, Actualización Manual del Kernel
paquete, Actualización Manual del Kernel
paquete RPM , Actualización Manual del Kernel
paquetes del kernel, Descripción general de los Paquetes del kernel
realizando la actualización del kernel, Realizando la actualización
Kernel Dump Configuration (ver kdump)
kernel module
bonding module, Using Channel Bonding
description, Using Channel Bonding
parameters to bonded interfaces, Bonding Module Directives
definition, Working with Kernel Modules
directories
/etc/sysconfig/modules/ , Carga Persistente de Módulos
/lib/modules/kernel_version/kernel/drivers/ , Loading a Module
Ethernet module
supporting multiple cards, Utilización de Múltiples Tarjetas Ethernet
files
/proc/modules , Listing Currently-Loaded Modules
listing
currently loaded modules, Listing Currently-Loaded Modules
module information, Displaying Information About a Module
loading
at the boot time, Carga Persistente de Módulos
for the current session, Loading a Module
module parameters
bonding module parameters, Bonding Module Directives
supplying, Setting Module Parameters
unloading, Unloading a Module
utilities
insmod , Loading a Module
lsmod , Listing Currently-Loaded Modules
modinfo , Displaying Information About a Module
modprobe , Loading a Module, Unloading a Module
rmmod , Unloading a Module
kwin , Gestores de ventanas
(ver también X)

L

language configuración (ver Región y Lenguaje)
LDAP (ver OpenLDAP)
Log File Viewer
filtering, Visualizar los archivos de registro
monitoring, Control de Archivos de Registro
searching, Visualizar los archivos de registro
log files, Viewing and Managing Log Files
(ver también Log Viewer )
additional resources
installed documentation, Documentación instalada
useful websites, Sitios Web útiles
description, Viewing and Managing Log Files
locating, Localizar archivos de registro
monitoring, Control de Archivos de Registro
rotating, Localizar archivos de registro
rsyslogd daemon , Viewing and Managing Log Files
viewing, Visualizar los archivos de registro
Log Viewer
refresh rate, Visualizar los archivos de registro
logrotate , Localizar archivos de registro
lsblk, Using the lsblk Command
lscpu, Using the lscpu Command
lsmod , Listing Currently-Loaded Modules
(ver también kernel module)
lspci, Using the lspci Command, /proc/bus/pci
lspcmcia, Using the lspcmcia Command
lsusb, Using the lsusb Command

M

Mail Delivery Agent (ver email)
Mail Transport Agent (ver email) (ver MTA)
Mail Transport Agent Switcher , Configuración del Agente de Transporte de Correo (MTA)
Mail User Agent (ver email)
MDA (ver Mail Delivery Agent)
medio de arranque, Preparación para la actualización
metacity , Gestores de ventanas
(ver también X)
modinfo , Displaying Information About a Module
(ver también kernel module)
modprobe , Loading a Module, Unloading a Module
(ver también kernel module)
module (ver kernel module)
module parameters (ver kernel module)
MTA (ver Mail Transport Agent)
setting default, Configuración del Agente de Transporte de Correo (MTA)
switching with Mail Transport Agent Switcher , Configuración del Agente de Transporte de Correo (MTA)
MUA, Configuración del Agente de Transporte de Correo (MTA) (ver Mail User Agent)
Multihomed DHCP
host configuration, Host Configuration
server configuration, Configuring a Multihomed DHCP Server
mwm , Gestores de ventanas
(ver también X)

O

opannotate (ver OProfile)
opcontrol (ver OProfile)
OpenLDAP
checking status, Checking the Service Status
client applications, Overview of Common LDAP Client Applications
configuration
database, Changing the Database-Specific Configuration
global, Changing the Global Configuration
overview, OpenLDAP Server Setup
directives
olcAllows, Changing the Global Configuration
olcConnMaxPending, Changing the Global Configuration
olcConnMaxPendingAuth, Changing the Global Configuration
olcDisallows, Changing the Global Configuration
olcIdleTimeout, Changing the Global Configuration
olcLogFile, Changing the Global Configuration
olcReadOnly, Changing the Database-Specific Configuration
olcReferral, Changing the Global Configuration
olcRootDN, Changing the Database-Specific Configuration
olcRootPW, Changing the Database-Specific Configuration
olcSuffix, Changing the Database-Specific Configuration
olcWriteTimeout, Changing the Global Configuration
directories
/etc/openldap/slapd.d/, Configuring an OpenLDAP Server
/etc/openldap/slapd.d/cn=config/cn=schema/, Extending Schema
features, Características de OpenLDAP
files
/etc/openldap/ldap.conf, Configuring an OpenLDAP Server
/etc/openldap/slapd.d/cn=config.ldif, Changing the Global Configuration
/etc/openldap/slapd.d/cn=config/olcDatabase={1}bdb.ldif, Changing the Database-Specific Configuration
installation, Installing the OpenLDAP Suite
migrating authentication information, Migrar la información de autenticación antigua al formato LDAP
packages, Installing the OpenLDAP Suite
restarting, Restarting the Service
running, Starting the Service
schema, Extending Schema
stopping, Stopping the Service
terminology
attribute, Terminología LDAP
entry, Terminología LDAP
LDIF , Terminología LDAP
utilities, Overview of OpenLDAP Server Utilities, Overview of OpenLDAP Client Utilities
OpenSSH, OpenSSH, Main Features
(ver también SSH)
additional resources, Recursos adicionales
client, OpenSSH Clients
scp , Using the scp Utility
sftp , Using the sftp Utility
ssh , Using the ssh Utility
DSA keys
generating, Generar pares de claves
RSA keys
generating, Generar pares de claves
RSA Version 1 keys
generating, Generar pares de claves
server, Starting an OpenSSH Server
starting, Starting an OpenSSH Server
stopping, Starting an OpenSSH Server
ssh-add , Configuring ssh-agent
ssh-agent , Configuring ssh-agent
ssh-keygen
DSA, Generar pares de claves
RSA, Generar pares de claves
RSA Version 1, Generar pares de claves
using key-based authentication, Using a Key-Based Authentication
OpenSSL
additional resources, Recursos adicionales
SSL (ver SSL)
TLS (ver TLS)
ophelp , Configurar los eventos a supervisar
opreport (ver OProfile)
OProfile, OProfile
/dev/oprofile/ , Understanding /dev/oprofile/
additional resources, Recursos adicionales
configuring, Configuración de Oprofile
separating profiles, Separar perfiles del Kernel y del espacio del usuario
events
sampling rate, Velocidad de muestreo
setting, Configurar los eventos a supervisar
Java, OProfile Support for Java
monitoring the kernel, Especificar el Kernel
opannotate , Using opannotate
opcontrol , Configuración de Oprofile
--no-vmlinux , Especificar el Kernel
--start , Iniciar y detener Oprofile
--vmlinux= , Especificar el Kernel
ophelp , Configurar los eventos a supervisar
opreport , Using opreport , Obtener salidas más detalladas sobre los módulos
on a single executable, Using opreport on a Single Executable
oprofiled , Iniciar y detener Oprofile
log file, Iniciar y detener Oprofile
overview of tools, Descripción general de las herramientas
reading data, Análisis de los datos
saving data, Guardar los datos
starting, Iniciar y detener Oprofile
SystemTap, OProfile and SystemTap
unit mask, Máscaras de unidades
oprofiled (ver OProfile)
oprof_start , Interfaz gráfica

P

PackageKit, PackageKit
adding and removing, Using Add/Remove Software
architecture, PackageKit Architecture
installing and removing package groups, Installing and Removing Package Groups
installing packages , PackageKit
managing packages , PackageKit
PolicyKit
authentication, Updating Packages with Software Update
uninstalling packages , PackageKit
updating packages , PackageKit
viewing packages , PackageKit
viewing transaction log, Viewing the Transaction Log
packages
adding and removing with PackageKit, Using Add/Remove Software
dependencies, Dependencias no resueltas
determining file ownership with, Ejemplos comunes y prácticos sobre el uso de RPM
displaying packages
yum info, Mostrando información del paquete
displaying packages with Yum
yum info, Mostrando información del paquete
filtering with PackageKit, Finding Packages with Filters
Development, Finding Packages with Filters
Free, Finding Packages with Filters
Hide Subpackages, Finding Packages with Filters
Installed, Finding Packages with Filters
No Filter, Finding Packages with Filters
Only Available, Finding Packages with Filters
Only Development, Finding Packages with Filters
Only End User Files, Finding Packages with Filters
Only Graphical, Finding Packages with Filters
Only Installed, Finding Packages with Filters
Only Native Packages, Finding Packages with Filters
Only Newest Packages, Finding Packages with Filters
filtering with PackageKit for packages, Finding Packages with Filters
finding deleted files from, Ejemplos comunes y prácticos sobre el uso de RPM
finding RPM packages, Encontrar paquetes RPM
iFedora installation media, Encontrar paquetes RPM
initial RPM repositories, Encontrar paquetes RPM
installing a package group with Yum, Installing Packages
installing and removing package groups, Installing and Removing Package Groups
installing packages with PackageKit, PackageKit, Installing and Removing Packages (and Dependencies)
dependencies, Installing and Removing Packages (and Dependencies)
installing RPM, Installing and Upgrading
installing with Yum, Installing Packages
listing packages with Yum
Glob expressions, Listando paquetes
yum grouplist, Listando paquetes
yum list all, Listando paquetes
yum list available, Listando paquetes
yum list installed, Listando paquetes
yum repolist, Listando paquetes
yum search, Listando paquetes
locating documentation for, Ejemplos comunes y prácticos sobre el uso de RPM
managing packages with PackageKit, PackageKit
obtaining list of files, Ejemplos comunes y prácticos sobre el uso de RPM
packages and package groups, Paquetes y grupos de paquetes
querying uninstalled, Ejemplos comunes y prácticos sobre el uso de RPM
removing, Desinstalación
removing package groups with Yum, Removing Packages
removing packages with PackageKit, Installing and Removing Packages (and Dependencies)
RPM, RPM
already installed, Paquete ya instalado
configuration file changes, Configuration File Changes
conflict, Archivos en conflicto
failed dependencies, Dependencias no resueltas
freshening, Refrescamiento
pristine sources, Metas de diseño RPM
querying, Consultas
removing, Desinstalación
source and binary packages, RPM
tips, Ejemplos comunes y prácticos sobre el uso de RPM
uninstalling, Desinstalación
verifying, Verificación
searching for packages with Yum
yum search, Buscando paquetes
searching packages with Yum
yum search, Buscando paquetes
setting packages with PackageKit
checking interval, Setting the Update-Checking Interval
uninstalling packages with PackageKit, PackageKit
uninstalling packages with Yum, Removing Packages
yum remove package_name, Removing Packages
updating currently installed packages
available updates, Updating Packages with Software Update
updating packages with PackageKit, PackageKit
PolicyKit, Updating Packages with Software Update
Software Update, Updating Packages with Software Update
upgrading RPM, Installing and Upgrading
viewing packages with PackageKit, PackageKit
viewing transaction log, Viewing the Transaction Log
viewing Yum repositories with PackageKit, Setting the Software Sources
Yum instead of RPM, RPM
paquete
kernel RPM, Actualización Manual del Kernel
paquete del kernel
encabezados del kernel
archivos de encabezado de los archivos C , Descripción general de los Paquetes del kernel
kernel
para sistemas con procesadores sencillos o múltiples, y sistema de multiprocesadores, Descripción general de los Paquetes del kernel
kernel-doc
archivos de documentación, Descripción general de los Paquetes del kernel
perf
archivos firmware , Descripción general de los Paquetes del kernel
paquetes
encabezados del kernel
archivos de encabezado de los archivos C, Descripción general de los Paquetes del kernel
firmware de linux
archivos firmware, Descripción general de los Paquetes del kernel
kernel
para sistemas con procesadores sencillos, múltiples, y sistema de multiprocesadores, Descripción general de los Paquetes del kernel
kernel-devel
encabezados del kernel y archivos makefile, Descripción general de los Paquetes del kernel
kernel-doc
archivos de documentación , Descripción general de los Paquetes del kernel
perf
archivos firmware, Descripción general de los Paquetes del kernel
paquetes del kernel
firmware de linux
archivos firmware, Descripción general de los Paquetes del kernel
kernel-devel
encabezados del núcleo y archivos makefile, Descripción general de los Paquetes del kernel
partx, Using the partx Command
password
aging, Enabling Password Aging
expire, Enabling Password Aging
passwords
shadow, Contraseñas Shadow
pdbedit program, Programas de distribución Samba
PolicyKit, Updating Packages with Software Update
Postfix, Postfix
default installation, La instalación predeterminada de Postfix
postfix, Configuración del Agente de Transporte de Correo (MTA)
prefdm (ver X)
primary nameserver (ver BIND)
Printer Configuration
CUPS, Configuración de la impresora
IPP Printers, Añadir una impresora de red IPP
LDP/LPR Printers, Agregando una impresora o equipo LPD/LPR
Local Printers, Añadir una impresora local
New Printer, Iniciando ajustes de impresora
Print Jobs, Administración de trabajos de impresión
Samba Printers, Adding a Samba (SMB) printer
Settings, The Settings Page
Sharing Printers, Sharing Printers
printers (ver Printer Configuration)
proc file system
/proc/buddyinfo , /proc/buddyinfo
/proc/bus/ directory, /proc/bus/
/proc/bus/pci
viewing using lspci , /proc/bus/pci
/proc/cmdline , /proc/cmdline
/proc/cpuinfo , /proc/cpuinfo
/proc/crypto , /proc/crypto
/proc/devices
block devices, /proc/devices
character devices, /proc/devices
/proc/dma , /proc/dma
/proc/driver/ directory, /proc/driver/
/proc/execdomains , /proc/execdomains
/proc/fb , /proc/fb
/proc/filesystems , /proc/filesystems
/proc/fs/ directory, /proc/fs
/proc/interrupts , /proc/interrupts
/proc/iomem , /proc/iomem
/proc/ioports , /proc/ioports
/proc/irq/ directory, /proc/irq/
/proc/kcore , /proc/kcore
/proc/kmsg , /proc/kmsg
/proc/loadavg , /proc/loadavg
/proc/locks , /proc/locks
/proc/mdstat , /proc/mdstat
/proc/meminfo , /proc/meminfo
/proc/misc , /proc/misc
/proc/modules , /proc/modules
/proc/mounts , /proc/mounts
/proc/mtrr , /proc/mtrr
/proc/net/ directory, /proc/net/
/proc/partitions , /proc/partitions
/proc/PID/ directory, /proc/PID/
/proc/scsi/ directory, /proc/scsi/
/proc/self/ directory, /proc/self/
/proc/slabinfo , /proc/slabinfo
/proc/stat , /proc/stat
/proc/swaps , /proc/swaps
/proc/sys/ directory, /proc/sys/ , Using the sysctl Command
(ver también sysctl )
/proc/sys/dev/ directory, /proc/sys/dev/
/proc/sys/fs/ directory, /proc/sys/fs/
/proc/sys/kernel/ directory, /proc/sys/kernel/
/proc/sys/kernel/exec-shield , /proc/sys/kernel/
/proc/sys/kernel/sysrq (ver system request key)
/proc/sys/net/ directory, /proc/sys/net/
/proc/sys/vm/ directory, /proc/sys/vm/
/proc/sysrq-trigger , /proc/sysrq-trigger
/proc/sysvipc/ directory, /proc/sysvipc/
/proc/tty/ directory, /proc/tty/
/proc/uptime , /proc/uptime
/proc/version , /proc/version
additional resources, Referencias
installed documentation, Documentación instalada
useful websites, Sitios Web útiles
changing files within, Changing Virtual Files, /proc/sys/ , Using the sysctl Command
files within, top-level, Top-level Files within the proc File System
introduced, The proc File System
process directories, Process Directories
subdirectories within, Directories within /proc/
viewing files within, Viewing Virtual Files
procesos, Viewing System Processes
Procmail, Agente de entrega de correo
additional resources, Recursos adicionales
configuration, Configuración de Procmail
recipes, Recetas de Procmail
delivering, Recetas de entrega vs. recetas de no entrega
examples, Ejemplos de recetas
flags, Indicadores
local lockfiles, Especificación de un Lockfile local
non-delivering, Recetas de entrega vs. recetas de no entrega
SpamAssassin, Filtros de correo basura
special actions, Condiciones y acciones especiales
special conditions, Condiciones y acciones especiales
ps, Using the ps Command

R

RAM, Viewing Memory Usage
rcp , Using the scp Utility
recursive nameserver (ver BIND)
Región y Lenguaje
configuración del lenguaje, Cambiando el lenguaje
configuración del teclado, Cambiando la disposición del teclado
configuraciones del sistema, Viendo la configuración Actual
date, time, and numeric format configuration, Cambiando la Fecha, la Hora y el Formato Numérico
registro de recursos (ver BIND)
Reglas de Control de Acceso
en SSSD,, El proveedor de Acceso Único
removing package groups
removing package groups with PackageKit, Installing and Removing Package Groups
rmmod , Unloading a Module
(ver también kernel module)
rndc (ver BIND)
root nameserver (ver BIND)
rpcclient program, Programas de distribución Samba
RPM, RPM
additional resources, Recursos adicionales
already installed, Paquete ya instalado
basic modes, El uso de RPM
book about, Libros relacionados
configuration file changes, Configuration File Changes
conf.rpmsave, Configuration File Changes
conflicts, Archivos en conflicto
dependencies, Dependencias no resueltas
design goals
powerful querying, Metas de diseño RPM
system verification, Metas de diseño RPM
upgradability, Metas de diseño RPM
determining file ownership with, Ejemplos comunes y prácticos sobre el uso de RPM
documentation with, Ejemplos comunes y prácticos sobre el uso de RPM
failed dependencies, Dependencias no resueltas
file conflicts
resolving, Archivos en conflicto
file name, Installing and Upgrading
finding deleted files with, Ejemplos comunes y prácticos sobre el uso de RPM
finding RPM packages, Encontrar paquetes RPM
freshening, Refrescamiento
GnuPG, Revisando la firma de los paquetes
installing, Installing and Upgrading
md5sum, Revisando la firma de los paquetes
objetivos de diseño, Metas de diseño RPM
querying, Consultas
querying for file list, Ejemplos comunes y prácticos sobre el uso de RPM
querying uninstalled packages, Ejemplos comunes y prácticos sobre el uso de RPM
tips, Ejemplos comunes y prácticos sobre el uso de RPM
uninstalling, Desinstalación
upgrading, Installing and Upgrading
verificando las firmas del paquete, Revisando la firma de los paquetes
verifying, Verificación
website, Sitios Web útiles
RPM Package Manager (ver RPM)
RSA keys
generating, Generar pares de claves
RSA Version 1 keys
generating, Generar pares de claves
rsyslog , Viewing and Managing Log Files

S

Samba (ver Samba)
Abilities, Características de Samba
Account Information Databases, Bases de datos de información de cuentas Samba
ldapsam , Bases de datos de información de cuentas Samba
ldapsam_compat , Bases de datos de información de cuentas Samba
mysqlsam , Bases de datos de información de cuentas Samba
Plain Text, Bases de datos de información de cuentas Samba
smbpasswd , Bases de datos de información de cuentas Samba
tdbsam , Bases de datos de información de cuentas Samba
xmlsam , Bases de datos de información de cuentas Samba
Additional Resources, Recursos adicionales
installed documentation, Documentación instalada
related books, Libros relacionados
useful websites, Sitios Web útiles
Backward Compatible Database Back Ends, Bases de datos de información de cuentas Samba
Browsing, Navegación de red con Samba
configuration, Configuración del servidor Samba, Configuración desde la línea de comandos
default, Configuración del servidor Samba
CUPS Printing Support, Samba con soporte para la impresión con CUPS
CUPS smb.conf, Simple smb.conf Settings
daemon, Demonios Samba y Servicios relacionados
nmbd, Demonios Samba
overview, Demonios Samba
smbd, Demonios Samba
winbindd, Demonios Samba
encrypted passwords, Contraseñas encriptadas
findsmb , Línea de comandos
graphical configuration, Configuración gráfica
Introduction, Introducción a Samba
Network Browsing, Navegación de red con Samba
Domain Browsing, Domain Browsing
WINS, WINS (Windows Internet Name Server)
New Database Back Ends, Bases de datos de información de cuentas Samba
Programs, Programas de distribución Samba
findsmb , Programas de distribución Samba
net , Programas de distribución Samba
nmblookup , Programas de distribución Samba
pdbedit , Programas de distribución Samba
rpcclient , Programas de distribución Samba
smbcacls , Programas de distribución Samba
smbclient , Programas de distribución Samba
smbcontrol , Programas de distribución Samba
smbpasswd , Programas de distribución Samba
smbspool , Programas de distribución Samba
smbstatus , Programas de distribución Samba
smbtar , Programas de distribución Samba
testparm , Programas de distribución Samba
wbinfo , Programas de distribución Samba
Reference, Samba
Samba Printers, Adding a Samba (SMB) printer
Security Modes, Modos de seguridad Samba
Active Directory Security Mode, Modo de seguridad de Active Directory (seguridad a nivel de usuario)
Domain Security Mode, Modo de seguridad de dominio (seguridad a nivel del usuario)
Server Security Mode, Modo de seguridad de servidor (seguridad a nivel de usuario)
Share-Level Security, Share-Level Security
User Level Security, Seguridad a nivel de usuario
Server Types, Samba Server Types and the smb.conf File
server types
Domain Controller, Domain Controller
Domain Member, Servidor miembro de dominio
Stand Alone, Servidor independiente
service
conditional restarting, Arrancar y detener el Samba
reloading, Arrancar y detener el Samba
restarting, Arrancar y detener el Samba
starting, Arrancar y detener el Samba
stopping, Arrancar y detener el Samba
share
connecting to via the command line, Línea de comandos
connecting to with Nautilus, Conexión a un recurso compartido Samba
mounting, Montar el recurso compartido Samba
smb.conf, Samba Server Types and the smb.conf File
Active Directory Member Server example, Servidor miembro de dominio Active Directory
Anonymous Print Server example, Servidor de impresión anónimo
Anonymous Read Only example, Anónimo de sólo lectura
Anonymous Read/Write example, Anónimo Lectura/Escritura
NT4-style Domain Member example, Servidor miembro de dominio basado en Windows NT4
PDC using Active Directory, Primary Domain Controller (PDC) con Active Directory
PDC using tdbsam , Primary Domain Controller (PDC) using tdbsam
Secure File and Print Server example, Archivo seguro de lectura/escritura y servidor de impresión
smbclient , Línea de comandos
WINS, WINS (Windows Internet Name Server)
with Windows NT 4.0, 2000, ME, and XP, Contraseñas encriptadas
scp (ver OpenSSH)
secondary nameserver (ver BIND)
security plug-in (ver Security)
Security-Related Packages
updating security-related packages, Actualizando paquetes
Sendmail, Sendmail
additional resources, Recursos adicionales
aliases, Creación de máscaras
common configuration changes, Cambios comunes de configuración de Sendmail
default installation, La instalación de Sendmail por defecto
LDAP and, Uso de Sendmail con LDAP
limitations, Propósitos y limitaciones
masquerading, Creación de máscaras
purpose, Propósitos y limitaciones
spam, Detener el correo basura
with UUCP, Cambios comunes de configuración de Sendmail
sendmail, Configuración del Agente de Transporte de Correo (MTA)
services configuration, Services and Daemons
ssystemctl , Running Services
systemctl , Configuring Services
Servidor HTTP (ver Servidor HTTP Apache)
servidor web (ver Servidor HTTP Apache)
sftp (ver OpenSSH)
shadow passwords
overview of, Contraseñas Shadow
sistemas de archivos, Viewing Block Devices and File Systems
slab pools (ver /proc/slabinfo )
slapd (ver OpenLDAP)
smbcacls program, Programas de distribución Samba
smbclient , Línea de comandos
smbclient program, Programas de distribución Samba
smbcontrol program, Programas de distribución Samba
smbpasswd program, Programas de distribución Samba
smbspool program, Programas de distribución Samba
smbstatus program, Programas de distribución Samba
smbtar program, Programas de distribución Samba
SpamAssassin
using with Procmail, Filtros de correo basura
ssh (ver OpenSSH)
SSH protocol
authentication, Autenticación
configuration files, Archivos de configuración
system-wide configuration files, Archivos de configuración
user-specific configuration files, Archivos de configuración
connection sequence, Secuencia de eventos de una conexión SSH
features, Main Features
insecure protocols, Requiriendo SSH para conexiones remotas
layers
channels, Canales
transport layer, Capa de transporte
port forwarding, Reenvío del puerto
requiring for remote login, Requiriendo SSH para conexiones remotas
security risks, ¿Por qué usar SSH?
version 1, Protocol Versions
version 2, Protocol Versions
X11 forwarding, Reenvío por X11
ssh-add , Configuring ssh-agent
ssh-agent , Configuring ssh-agent
SSL, Setting Up an SSL Server
(ver también Apache HTTP Server)
SSL server (ver Apache HTTP Server)
SSSD
Configuring a Microsoft Active Directory Domain for, Configuring a Microsoft Active Directory Domain
Configuring a proxy domain for, Configuring a Proxy Domain
Configuring an LDAP domain for, Configuring an LDAP Domain
Selecting an LDAP schema for, Configuring an LDAP Domain
Setting Up Kerberos authentication for, Setting Up Kerberos Authentication
Specifying timeout values for, Configuring an LDAP Domain
startx , Runlevel 3 (ver X)
(ver también X)
stunnel , Asegurar las comunicaciones de cliente de correo
sysconfig directory
/etc/sysconfig/apm-scripts/ directory, Directories in the /etc/sysconfig/ Directory
/etc/sysconfig/arpwatch , /etc/sysconfig/arpwatch
/etc/sysconfig/authconfig , /etc/sysconfig/authconfig
/etc/sysconfig/autofs , /etc/sysconfig/autofs
/etc/sysconfig/cbq/ directory, Directories in the /etc/sysconfig/ Directory
/etc/sysconfig/clock , /etc/sysconfig/clock
/etc/sysconfig/dhcpd , /etc/sysconfig/dhcpd
/etc/sysconfig/firstboot , /etc/sysconfig/firstboot
/etc/sysconfig/init , /etc/sysconfig/init
/etc/sysconfig/ip6tables-config , /etc/sysconfig/ip6tables-config
/etc/sysconfig/keyboard , /etc/sysconfig/keyboard
/etc/sysconfig/ldap , /etc/sysconfig/ldap
/etc/sysconfig/named , /etc/sysconfig/named
/etc/sysconfig/network , /etc/sysconfig/network
/etc/sysconfig/network-scripts/ directory, Interfaces de red, Directories in the /etc/sysconfig/ Directory
(ver también network)
/etc/sysconfig/networking/ directory, Directories in the /etc/sysconfig/ Directory
/etc/sysconfig/ntpd , /etc/sysconfig/ntpd
/etc/sysconfig/quagga , /etc/sysconfig/quagga
/etc/sysconfig/radvd , /etc/sysconfig/radvd
/etc/sysconfig/samba , /etc/sysconfig/samba
/etc/sysconfig/selinux , /etc/sysconfig/selinux
/etc/sysconfig/sendmail , /etc/sysconfig/sendmail
/etc/sysconfig/spamassassin , /etc/sysconfig/spamassassin
/etc/sysconfig/squid , /etc/sysconfig/squid
/etc/sysconfig/system-config-users , /etc/sysconfig/system-config-users
/etc/sysconfig/vncservers , /etc/sysconfig/vncservers
/etc/sysconfig/xinetd , /etc/sysconfig/xinetd
additional information about, The sysconfig Directory
additional resources, Recursos adicionales
installed documentation, Documentación instalada
directories in, Directories in the /etc/sysconfig/ Directory
files found in, Files in the /etc/sysconfig/ Directory
sysctl
configuring with /etc/sysctl.conf , Using the sysctl Command
controlling /proc/sys/ , Using the sysctl Command
SysRq (ver system request key)
system analysis
OProfile (ver OProfile)
system information
cpu usage, Viewing CPU Usage
file systems, Viewing Block Devices and File Systems
/dev/shm, Using the df Command
/run, Using the df Command
/sys/fs/cgroup, Using the df Command
gathering, System Monitoring Tools
hardware, Viewing Hardware Information
memory usage, Viewing Memory Usage
processes, Viewing System Processes
currently running, Using the top Command
System Monitor, Using the System Monitor Tool, Using the System Monitor Tool, Using the System Monitor Tool, Using the System Monitor Tool
system request key
enabling, /proc/sys/
System Request Key
definition of, /proc/sys/
setting timing for, /proc/sys/kernel/
system-config-authentication (ver herramienta de configuración de autenticación )
system-config-kdump (ver kdump)
system-config-users (ver user configuration and group configuration)
systemctl (ver services configuration)

T

Tareas automatizadas, Automating System Tasks
testparm program, Programas de distribución Samba
time, Usando la herramienta de configuración de fecha y hora
(ver también Fecha y Hora)
TLB cache (ver hugepages)
TLS, Setting Up an SSL Server
(ver también Apache HTTP Server)
top, Using the top Command
twm , Gestores de ventanas
(ver también X)

U

updating currently installed packages
available updates, Updating Packages with Software Update
updating packages with PackageKit
PolicyKit, Updating Packages with Software Update
User Accounts (ver user configuration)
user configuration
adding users, Añadir un nuevo usuario, Añadir un nuevo usuario
changing full name, Modificar las propiedades del usuario
changing home directory, Modificar las propiedades del usuario
changing login shell, Modificar las propiedades del usuario
changing password, Modificar las propiedades del usuario
command line configuration
chage, Enabling Password Aging
passwd, Añadir un nuevo usuario
useradd, Añadir un nuevo usuario
filtering list of users, Viewing Users and Groups
modify groups for a user, Modificar las propiedades del usuario
modifying users, Modificar las propiedades del usuario
password
forcing expiration of, Enabling Password Aging
removing users, Removing a User
viewing list of users, Using the User Accounts Tool, Using the User Manager Tool
User Manager (ver user configuration)
user private groups (ver groups)
and shared directories, Creating Group Directories
useradd command
user account creation using, Añadir un nuevo usuario
users (ver user configuration)
additional resources, Recursos adicionales
installed documentation, Documentación instalada
introducing, Managing Users and Groups
tools for management of
User Manager, Using Command Line Tools
useradd, Using Command Line Tools
UID, Managing Users and Groups
utilización de memoria, Viewing Memory Usage

V

virtual file system (ver proc file system)
virtual files (ver proc file system)
virtual host (ver Apache HTTP Server)
vsftpd , Servidores FTP
(ver también FTP)
additional resources, Recursos adicionales
installed documentation, Documentación instalada
useful websites, Sitios Web útiles
archivo de configuración
controles de acceso, Opciones de conexión y control de acceso
formato de, vsftpd Opciones de configuracion
opciones de acceso, Opciones de conexión y control de acceso
opciones de demonio, Opciones de demonios
opciones de usuario anonimo, Opciones de usuario anónimo
opciones de usuario local, Opciones del usuario local
archivo de configuracion
/etc/vsftpd/vsftpd.conf , vsftpd Opciones de configuracion
características de seguridad, Servidores FTP
condrestart, Iniciar y Detener vsftpd
configuration file
directory options, Opciones de directorio
file transfer options, Opciones de transferencia de archivos
logging options, Opciones de conexión
network options, Opciones de red
detener, Iniciar y Detener vsftpd
estado, Iniciar y Detener vsftpd
Iniciando multiples copias de, Iniciando múltiples copias de vfstpd
Iniciar, Iniciar y Detener vsftpd
multihome configuration, Iniciando múltiples copias de vfstpd
reiniciado, Iniciar y Detener vsftpd
RPM
archivos instalados por, Archivos instalados con vsftpd

W

wbinfo program, Programas de distribución Samba
window managers (ver X)
Windows 2000
connecting to shares using Samba, Contraseñas encriptadas
Windows 98
connecting to shares using Samba, Contraseñas encriptadas
Windows ME
connecting to shares using Samba, Contraseñas encriptadas
Windows NT 4.0
connecting to shares using Samba, Contraseñas encriptadas
Windows XP
connecting to shares using Samba, Contraseñas encriptadas

X

X
/etc/X11/xorg.conf
boolean values for, The Structure of the Configuration
Device , The Device section
DRI , The DRI section
Files section, The Files section
InputDevice section, The InputDevice section
introducing, The xorg.conf.d Directory, The xorg.conf File
Monitor , The Monitor section
Screen , The Screen section
Section tag, The Structure of the Configuration
ServerFlags section, The ServerFlags section
ServerLayout section, ServerLayout
structure of, The Structure of the Configuration
additional resources, Recursos adicionales
installed documentation, Documentación instalada
useful websites, Sitios Web útiles
configuration directory
/etc/X11/xorg.conf.d , The xorg.conf.d Directory
configuration files
/etc/X11/ directory, Archivos de configuración del servidor X
/etc/X11/xorg.conf , The xorg.conf File
options within, Archivos de configuración del servidor X
server options, The xorg.conf.d Directory, The xorg.conf File
desktop environments
GNOME, Entornos de escritorio
KDE, Entornos de escritorio
display managers
configuration of preferred, Runlevel 5
definition of, Runlevel 5
GNOME , Runlevel 5
KDE , Runlevel 5
prefdm script, Runlevel 5
xdm , Runlevel 5
fonts
Fontconfig, Fuentes
Fontconfig, adding fonts to, Añadir fuentes a Fontconfig
FreeType, Fuentes
introducing, Fuentes
Xft, Fuentes
introducing, El Sistema X Window
runlevels
3, Runlevel 3
5, Runlevel 5
runlevels and, Runlevels and X
window managers
kwin , Gestores de ventanas
metacity , Gestores de ventanas
mwm , Gestores de ventanas
twm , Gestores de ventanas
X clients, El Sistema X Window, Entornos de escritorio y gestores de ventanas
desktop environments, Entornos de escritorio
startx command, Runlevel 3
window managers, Gestores de ventanas
xinit command, Runlevel 3
X server, El Sistema X Window
features of, The X Server
X Window System (ver X)
X.500 (ver OpenLDAP)
X.500 Lite (ver OpenLDAP)
xinit (ver X)
Xorg (ver Xorg)

Y

Yum
Additional Resources, Recursos adicionales
configuring plug-ins, Enabling, Configuring, and Disabling Yum Plug-ins
configuring Yum and Yum repositories, Configurando Yum y repositorios de Yum
disabling plug-ins, Enabling, Configuring, and Disabling Yum Plug-ins
displaying packages
yum info, Mostrando información del paquete
displaying packages with Yum
yum info, Mostrando información del paquete
enabling plug-ins, Enabling, Configuring, and Disabling Yum Plug-ins
installing a package group with Yum, Installing Packages
installing with Yum, Installing Packages
listing packages with Yum
Glob expressions, Listando paquetes
yum grouplist, Listando paquetes
yum list, Listando paquetes
yum list all, Listando paquetes
yum list available, Listando paquetes
yum list installed, Listando paquetes
yum repolist, Listando paquetes
packages and package groups, Paquetes y grupos de paquetes
plug-ins
fs-snapshot, Plug-in Descriptions
presto, Plug-in Descriptions
refresh-packagekit, Plug-in Descriptions
rhnplugin, Plug-in Descriptions
security, Plug-in Descriptions
repository, Adding, Enabling, and Disabling a Yum Repository, Creating a Yum Repository
searching for packages with Yum
yum search, Buscando paquetes
searching packages with Yum
yum search, Buscando paquetes
setting [main] options, Setting [main] Options
setting [repository] options, Setting [repository] Options
uninstalling package groups with Yum, Removing Packages
uninstalling packages with Yum, Removing Packages
yum remove package_name, Removing Packages
variables, Using Yum Variables
Yum plug-ins, Yum Plug-ins
Yum repositories
configuring Yum and Yum repositories, Configurando Yum y repositorios de Yum
Yum repositories
viewing Yum repositories with PackageKit, Setting the Software Sources
Yum Updates
checking for updates, comprobación de actualizaciones
updating a single package, Actualizando paquetes
updating all packages and dependencies, Actualizando paquetes
updating packages, Actualizando paquetes
updating security-related packages, Actualizando paquetes

Z

Zona horaria, Usando la herramienta de configuración de fecha y hora
(ver también Fecha y Hora)